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Abstract

We consider in this paper, a new a posteriori residual type error estimator of a
conforming mixed finite element method for the coupling of fluid flow with porous
media flow on isotropic meshes. Flows are governed by the Navier-Stokes and
Darcy equations, respectively, and the corresponding transmission conditions are
given by mass conservation, balance of normal forces, and the Beavers-Joseph-
Saffman law. The finite element subspaces consider Bernardi-Raugel and Raviart-
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Thomas elements for the velocities, piecewise constants for the pressures, and
continuous piecewise linear elements for a Lagrange multiplier defined on the
interface. The a posteriori error estimate is based on a suitable evaluation on the
residual of the finite element solution. It is proven that the a posteriori error
estimate provided in this paper is both reliable and efficient. In addition, our
analysis can be extended to other finite element subspaces yielding a stable
Galerkin scheme.

1. Introduction

There are many serious problems currently facing the world in which
the coupling between groundwater and surface water is important. These
include questions such as predicting how pollution discharges into
streams, lakes, and rivers making its way into the water supply. This
coupling 1s also important in technological applications involving
filtration. In particular, for specific applications, we refer to flow in vuggy
porous media appearing in petroleum extraction [1, 2], groundwater
system in karst aquifers [19, 31], reservoir wellbore [3], industrial
filtrations [25, 32], topology optimization [23], and blood motion in tumors
and microvessels [35, 38]. We refer to the nice overview [18] and the
references therein for its physical background, modelling, and standard
numerical methods. One of the most popular models utilized to describe
the aforementioned interaction is the Navier-Stokes/Darcy (or Stokes-
Darcy) model, which consists in a set of differential equations where the
Navier-Stokes (or Stokes) problem is coupled with the Darcy model
through a set of coupling equations acting on a common interface given by
mass conservation, balance of normal forces, and the so called Beavers-
Joseph-Saffman condition. The Beavers-Joseph-Saffman condition was
experimentally derived by Beavers and Joseph in [6], modified by Saffman
in [37], and later mathematically justified in [28-30, 34].

A posteriori error estimators are computable quantities, expressed in
terms of the discrete solution and of the data that measure the actual
discrete errors without the knowledge of the exact solution. They are
essential to design adaptive mesh refinement algorithms which equi-

distribute the computational effort and optimize the approximation
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efficiency. Since the pioneering work of Babuska and Rheinboldt [5],
adaptive finite element methods based on a posteriori error estimates

have been extensively investigated.

A posteriori error estimations have been well-established for the
coupled Stokes-Darcy problem on isotropic meshes, mainly for 2D domains
[4, 13, 16, 21, 33] and recently on anisotropic meshes [26, 27]. However,
only few works exist for the coupled Navier-Stokes/Darcy problem, see for
instance [11, 24]. Up to the author’s knowledge, the first work dealing
with adaptive algorithms for the Navier-Stokes/Darcy coupling is [24],
where an a posteriori error estimator for a discontinuous Galerkin
approximation of this coupled problem with constant parameters is
proposed. In [11], the authors have derived a reliable and efficient
residual-based a posteriori error estimator for the three dimensional
version of the augmented-mixed method introduced in [12]. The finite
element subspaces that they have employed are piecewise constants,
Raviart-Thomas elements of lowest order, continuous piecewise linear
elements, and piecewise constants for the strain, Cauchy stress, velocity,
and vorticity in the fluid, respectively, whereas Raviart-Thomas elements
of lowest order for the velocity, piecewise constants for the pressure, and
continuous piecewise linear elements for the traces, are considered in the
porous medium. The authors in [17] consider the standard mixed
formulation in the Navier-Stokes domain and the dual-mixed one in the
Darcy region, which yields the introduction of the trace of the porous
medium pressure as a suitable Lagrange multiplier. The finite element
subspaces defining the discrete formulation employ Bernardi-Raugel and
Raviart-Thomas elements for the velocities, piecewise constants for the
pressures, and continuous piecewise linear elements for the Lagrange
multiplier. An a priori error analysis 1s performed with some numerical

tests confirming the convergence rates.

In this work, we develop an a posteriori error analysis for the finite
element method studied in [17]. The a posteriori error estimate is based on

a suitable evaluation on the residual of the finite element solution. We
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further prove that our a posteriori error estimator is both reliable and
efficient. These main results are summarized in Theorems 3.2 and 3.3.
The difference between our paper and the reference [11] is that our
analysis uses the standard mixed formulation in the Navier-Stokes
domain and the dual-mixed one in the Darcy region, and another family of
finite elements to approach the solution. In addition, it’s independent of
the finite elements employed to stabilize the scheme in [17]. Indeed, no
interpolation operator for example linked to the finite elements used in
this work is exploited in our a posteriori error analysis. Consequently, it
can be extended to other finite element subspaces yielding a stable

Galerkin scheme.

The rest of this work is organized as follows. Some preliminaries and
notation are given in Section 2. In Section 3, the a posteriori error
estimates are derived. The reliability analysis is carred out in Subsection
3.2, whereas in Subsection 3.3 we provide the efficiency analysis. Finally,

we offer our conclusion and the further works in Section 4.
2. Preliminaries and Notation

2.1. Model problem. For simplicity of exposition we set the problem in

R2. However, our study can be extended to the 3D case with few

modifications [17, 33]. We consider the model of a flow in a bounded
domain Q < R2, consisting of a porous medium domain Qp, where the
flow is a Darcy flow, and an open region Qg = Q \ Qp), where the flow is

governed by the Navier-Stokes equations. The two regions are separated
by an interface Z= 0Qp NQg. Let T, =0Q, \ Z, * e {S, D}. Each
interface and boundary is assumed to be polygonal. We denote by ng
(resp., np) the unit outward normal vector along 0Qg (resp., dQp).
Note that on the interface z, we have ng = —np. The Figure 1 gives a

schematic representation of the geometry.
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Figure 1. Domains for the 2D Navier-Stokes/Darcy model.

For any function v defined in Q, since its restriction to Qg or to Qp
could play a different mathematical roles (for instance their traces

onz ), we will set vg = vy and vp =y g,

In Q,, * € {S, D} we denote by u, the fluid velocity and by p, the
pressure. The motion of the fluid in Qg is described by the Navier-Stokes

equations
—-2udiv e(ug) + Vpg + p(ug - V)ug = fg in Qg,
divug = 0 in Qg, (1)
ug = 0 on I's,
while in the porous medium Qp), by Darcy’s law
K_luD + VpD = fD in QD,
divup = 0 in Qp, 2
up -np = 0 on I'p.

Here, pu > 0 is the dynamic viscosity of the fluid, p is its density, fg is a

given external force, fp) is a given external force that accounts for gravity,
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ie., fp =pg, where g is the gravity acceleration, div is the usual

divergence operator and e is the strain rate tensor defined by:

_1( oy o .o
e(w)ij -—g(gjﬂL% , 1<, j<2,

and K e [L*(Qp)P? a symmetric and uniformly positive definite tensor
in Qp representing the rock permeability x of the porous medium
divided by the dynamic viscosity u of the fluid. Throughout the paper, we

assume that there exits C > 0 such that
2
£ K2 > O,

for almost all x € Qp, and for all € e RZ,

Finally, we consider the following interface conditions on Z:

ug-ng +up-np =0, 3
ps —2ung -e(ug)-ng = pp, 4)
NT KT
———ng-e(ug) T=-ug -, (5)
o

where oy is a dimensionless constant which depends only on the

geometrical characteristics of the porous medium. Here, Equation (3)
represents mass conservation, Equation (4) the balance of normal forces,

and Equation (5) the Beavers-Joseph-Saffman conditions.

Equations (1) to (5) consist of the model of the coupled Navier-Stokes
and Darcy flows problem that we will study below.

2.2. The variational formulation. In this subsection, we introduce
the weak formulation derived in ([17], Subsection 2.2) for the coupled
problem given by (1) to (5). To this end, let us first introduce further

notations and definitions. In what follows, given * € {S, D}, u, v € LQ(Q* ),

u, v e [L2(Q,)F, and M, N e [L2(Q, )2, we set
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(w, v), = I uv, (u, v), = I u v, and (M, N), = I M : N,
Q Q Q.

E] %

where, given two arbitrary tensors M and N,

2
M:N:= tr(M'N) = > M;N
i j=1

i

where the superscript ¢ denotes transposition.

We use the standard terminology for Lebesgue and Sobolev spaces. In

addition, if O is a domain, given and r € R and p € [, «[, we define
H (0) = [H"(O)P and LP(0):=[LP(O)F. For r =0, we write L*(0)

and L2(I) instead of H°(0) and H®(I'), respectively, where T is a closed

Lipschitz curve. The corresponding norms are denoted by ||||r o (for
H"(0) and H"(0)), |- ||r’r (for H"(T)) and |- ||LP(O) (f p = 2). Also, the
Hilbert space

H(div; 0) == {w e L2(0): divwe L3(0)},

with norm | - | 4;, o is standard in the realm of mixed problems (see, e.g., [8]).
On the other hand, the symbol for the L?(T') inner product
(& My = I en, Ve & e L),
r

will also be employed for their respective extension as the duality product
H_l/z(l“)x Hl/z(l"). In addition, given two Hilbert spaces H; and Ho,
the product space H; xH,; will be endowed with the norm

I gt =11 ot [l Hy Hereafter, given a nonnegative integer k and

a subset S of R?, IP’Z(S ) stands for the space of polynomials defined on S of

degree < [. Finally, we employed 0 as a generic null vector.
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The unknowns in the variational formulation of the Navier-
Stokes/Darcy coupled problem and the corresponding spaces will be:

ug € H}_S(QS), ps € I2(Qg),up € Hp (div; Qp), pp eI?(Qp), where
H}_S(QS) = {veH'(Qg): v=0o0nTg}

Hp,(div; Qp) = {v e H(div; Qp): v-np=0onTp}

In addition, analogously to [22] we need to define a further unknown on

the coupling boundary:
L:=ppe H1/2(Z).

Note that, in principle, the space for pp does not allow enough regularity

for the trace A to exist. However, the solution of Darcy equations has the

pressure in H*(Qp)).

Next, for the derivation of the weak formulation of (1)-(5), we define

the space
13(@)={o e 22@): [ a0},

and we group the unkowns and spaces as follows:

u:=(ug,up)e H:= H}_S(QS)X Hp, (div; Qp);

(0. 1) € Q= T3@)x HYA(Y)),
where p = pgxag + Ppxap, With xq, being the characteristic function
for * € {S, D}.

The weak formulation of the coupled problem (1)-(5) can be stated as
follows [17]: Find (u, ¥) = ((ug, up), (p, 1)) € H x Q, such that

F(v), Vv:=(vg, vp)eH,

a(ug; u, v) + b(v, (p, 1))
(6)

b(u, (g, &)) 0, V(g ¢ eqQ,
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where a : H}_S(Qs)X(HXH) — R and b: HxQ — R are the forms
defined by

a(wg; u, v) == Ag(ug, vg)+ Os(ws; ug, vs) + Ap(up, vp),
b(v, (¢, 8)) = =(¢, div vg)g = (¢, divvp)p +(vs -ng + vp -np, &)y,
with

oG

Ag(ug, vs) = 2u(e(ug), e(vg))g + <f ug -7, Vs 'T>z ,

Og(wg; ug, vg) = p((ws - V)ug, vg)g,
Ap(up, vp):= (K up, vp)p,
and F(v) is the linear functional F : H — R defined as
F(v) = (fs, vs)s + (fp, vp)p, Vv :=(vg, vp)e H
We define the bilinear form a; and the nonlinear form aq by :
[ai(uw), v] = Ag(ug, vs)+ Ap(up, vp), )
[az(ug) (), v] = Og(ug; ug, vs), ®
and we set, for u = (ug, up), v=(vg, vp) and ¢ = (g, &)
[Aug)(ug, up), (vs, vp)l = [a;(w), v]+[az(ug)(u), v],
[B(vs, vp), 0] = b(v, g) +(vg -ng + vp -np, &y,
[7, v] = F(v).

In all the foregoing terms, [, -] denotes the duality pairing induced by the

corresponding operators. Then, the formulation (6) is equivalent to, find
(u, v) e Hx Q, with u = (ug, up) and y = (p, 1) such that:
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[A(ug) (w), v]+[B(v), v]

[B(u), 9] = 0, Vo e Q.

[F, v], vv € H,
9

This problem has a unique solution as proved in ([17], Subsection 2.2).

Theorem 2.1 ([17], Subsection 2.2, Theorem 2). Assume that fg € L2

(Qg) and fp e L2(Qp) satisfy the conditions (36) and (43) of the paper
[17]. Then, there exists a unique solution (u, (p, 1)) € HxQ of (9). In

addition, there exists a constant C > 0, independent of the solution, such

that

I(w, (P, Mg < CUEslo,ag +1£0lo,q, )-

2.3. Finite element discretization. Let T}‘? and T;? be respective

triangulations of the domains Qg and Qp formed by shape-regular

triangles of diameter hp and denote by hg and Ap their corresponding
mesh sizes. Assume that they match on Z so that 7, = T;? U T;? is a
triangulation of Q := Qg U z U Qp. Hereafter h := maxi{hg, hp}.

For each T € T ;? , we consider the local Raviart-Thomas space of the
lowest order [36]:

RTy(T) = span{(1, 0), (0, 1), (x;, x9)},
where (x1, x5) is a generic vector in R

In addition, for each T e T}‘? , we denote by BR(T) the local Bernardi-
Raugel space (see [7]):
BR(T) := [PX(T")* @ span{ningng, nynzng, ngnan; },

where {n;, ng, N3} are the baricentric coordinates of 7T, and {n;, ny, ng}

are the unit outward normals to opposite sides of the corresponding

vertices of 7. Hence, we define the following finite element subspaces:
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H;,(Qg) = {v e H(Qg): vy € BR(T), vT € T} },
H,(Qp) = {v e H(div; Qp) : vj7 € RT,(T), vT e T} },

Ly(Q) = {q € L*(Q) : qr € Po(T), VT e Ty}

The finite element subspaces for the velocities and pressure are,

respectively,
Hj, g (Qs) = Hz(Qg)N HII—S(QS),
Hy, r,(Qp) = Hp(Qp) N Hp (div; Qp),
Ly, 0(Q) = Ly (@) N L§(Q).

In turn, in order to define the discrete spaces for the unknowns on the

interface Z, we denote by Z 5 the partition of Z inherited from
T ;? (or ’T;? ) and we assume, without loss of generality, that the number
of edges of Zh is even. Then, we let z% be the partition of Z arising

by joining pairs of adjacent edges of Z b Note that since Z B is inherited

from the interior triangulations, it is automatically of bounded variation

(i.e., the ratio of lengths of adjacent edges is bounded) and, therefore, so is

Zgh' If the number of edges of Zh is odd, we simply reduce it to the

even case by joining any pair of two adjacent elements, and then construct

Z% from this reduced partition. Then, we define the following finite

element subspace for A e Hl/Q(Z) :

MY =1en < COY) gy < FU(E), VE € ) 1.
In this way, grouping the unknowns and spaces as follows:

uy, = (uy g, up p)e Hy rg (Qg)x Hy 1y (Qp);
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(Pn> Mp) € Qp = Ly (Q) x Ah(Z),

where pp = pp sxag + Pr,Dla;. the Galerkin approximation of (6)

reads: Find (uy, (py, A,)) € Hy, x @, such that,

{ah(uh,s§ uy, v)+b(v, (py, Ap)) = F(v), Vv = (vg, vp) € Hy,
b(uy, (g, &) = 0, Y(g,¢&) e Q.
(10)

Here aj : Hj g (Qg)x(Hp xHy) - R is the discrete version of a

defined by
an(wg; u, v)=a(lwg; u, v)+dJg(wg; ug, vg), (11)

for all ug, vg, wg € Hy(Qg), and where Jg(wg; ug, vg) is defined by:

Jg(wg; ug, vg) = %(us divwg, vg)g-
As before, we set, for wuy =(up g, upp), vy =(vp s, vy p) and
on = (an, &)
[An(ups)(Wp s, wnp) (Vig, Vi p)l = la(uy), vil+ [ad (uy g) (), vil,
with,
[af (up.g) (up), vi ] = [ag(up g) (up), v+ Is(up g5 up s, Vi s)-

Thus, the formulation (10) is equivalent to, find (uy, v, ) € Hy, x Qy,, with

uy = (uy g, up p) and ¥, = (pp, Ap) such that:

{[Ah(uh,s)(uh)> v]+[B(vy), ¥ ] = [F, vi ], ¥vp € Hy, (12)

[B(up), 7] =0, Yo, € Qp.

Theorem 2.2 (See [17], Subsection 3.2, Theorem 4 and Theorem 6).
Assume that fg € L2(QS) and fp e L2(QD) satisfy the conditions (71),
(78), (82), and (86) of the reference [17]. Then, there exists a unique
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solution (uy, (pp, M) € Hy xQy, to problem (12) and if the solution
(u, (p, 1)) e Hx Q of the continuous problem (9) is smooth enough, then

we have:

ICw, (2, 1)) = (ps (Prs 2 )leq < h(”usuz,gs + ||uD||1,QD + [div uD"l,QD

[Pl o + a0, 5)-

Here and below, in order to avoid excessive use of constants, the

abbreviation x < y stand for x < ¢y, with ¢ a positive constant independent

of x, y and 73,
For v = (vg, vp) € Hy, andfor (g, £) € Qj,, we can subtract (6) to (10) to
obtain the Galerkin orthogonality relation:
Ag(eyy, vs)+ Apley,, vp)+Ok(ug: ug, vg) - Ok(uy 55 up g, vs)
+b(e,, e,) =0,

b((eug, ey, )- (@ £)) = 0.

where here and below, the errors in the velocity, in the pressure and in

the Lagrange multiplier are respectively defined by

ey, = W, —Up.; e, =p-pyand e =i—Aip, *e{S, D}. (13)

*

We end this section with some notation again. For each T € 7, we

denoted by &(T') (resp., N(T')) the set of its edges (resp., vertices) and set

= @), Ny = |J N(T). For A c Q, we define
TeTy TeTy

Ep(A)={E &) : Ec Ay and Nj(A) ={x e N}, x € A}.
With every edge E € &, we introduce the outer normal vector by

n = (n,, n, )T. Furthermore, for each face E, we fix one of the two normal

vectors and denote it by ng. In addition, we introduce the tangent vector
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T=n' = (- Ny, Ny )T such that it is oriented positively (with respect to

.. . T
7). Similarly, set 7 = ng.

For any E € &, and any piecewise continuous function ¢, we denote

by [p]z its jump across E in the direction of ng :

lim ¢(x +tng)— lim o(x —ing) for an interior edge/face E,
t—0+ t—>0+

o]z (x) = ,
- thr(])n o(x —ing) for a boundary edge/face E.
—>0+

Furthermore one requires local subdomains (also known as patches).

As usual, let wp be the union of all elements having a common face with
T. Similarly, let wg be the union of both elements having E as face (with
appropriate modifications for a boundary face). By wy, we denote the

union of all elements having x as node.

In the sequel, we will also make use of the following differential
operator:

Qg _

ox,  or for v = (v, vy).

curl v :=

3. Error Estimators

In order to solve the Navier-Stokes/Darcy coupled problem by efficient
adaptive finite element methods, reliable and efficient a posteriori error
analysis 1s important to provide appropriated indicators. In this section,
we first define the local and global indicators and then the upper and

lower error bounds are derived.

3.1. Residual error estimator. The general philosophy of residual error
estimators is to estimate an appropriate norm of the correct residual by
terms that can be evaluated easier, and that involve the data at hand. To

this end denote the exact element residuals by

Rg r = fg +2udiv(e(u s)) - Vo s —plup s -Vuy s
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—%uh,sdivuh’s inTeT?,

RD,T = fD —Kiluh’D —Vph’D inTe T;?

As it i1s common, these exact residuals are replaced by some finite-

dimensional approximation called approximate element residual r, 7,

* e {S, D}
k 2 *
r,p € [P"(T)]" on T e Ty,

This approximation is here achieved by projecting fg on the space of
piecewise constant functions in Qg and piecewise P! functions in Q D>

more precisely for all T' e 78 , we take
1
fr s = ijf(x)dx,

while for all T € T, we take fr p as the unique element of [PY(T)]?
such that
[ fr0) - a@dx = [ £6)- aw)dx, va < [PO)P.
Finally, the global function f;, is defined by
fo,=fp.inT, VT eTj ciS D}

Hence

rg 1 = fr g +2udive(uy, g) - Vpp s —p(up s - Viup g

—%[div(uh,s)uh,s] inT e T;?,
rpr =frp- Kiluh,D ~VpppinT e T;?.

Next introduce the gradient jump in normal direction by
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[(Cue(up g)-ppsl) ngly if Ee&,(Qg),
JE,nE =
0 if E ¢ Eh(aQS ),

where I is the identity matrix of RZ2,

Definition 3.1 (Residual error estimator). The residual error estimator

is globally defined by:

1/2

©=1 > OFr+ ., Ohrf . (14)

S D
TeTh Te’Th

where the local error indicators G%,T (with T e T }f ) and ®2D,T (with

T e T,?) are given by

2 2 2
O%r =lrsrlir+ D, gl s
Eeg(T)ﬂgh(ﬁs)
+ Z | — Pn.s + Pn,p — 2ung -e(uh,s)-nsllﬁ,E

Ec&(TNERL(Y)

2
o gy

+ —<%—u; g -7+2ung -e(uy g)- T
m h,S S h,S

EcE&(TNEL(Y)

0,E

+ ) luns ng+wpp -npl g
Eegh(i)

+ |div uy, sl 7 (15)
and

0%.7 = h(|fup — VPnp - K‘luh,ull?),T + eurl(fy, p - K_luh,D”(Z),T)

+

B 2
hg|[(fr.p - K up p - Vorp) TElElo &
Ec&(TNEL(Qp)
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+ > h|(Fo.p ~ K "anp = Vorp)-Tel 5
E<&(T)ER(p)

+ Z hglpnp =Ml g
EcE(TNER(E)

+ | div uy, D||g,T. (16)

Furthermore denote the local and global approximation terms by

I£s = £4,sllo. 7. vT e T},

Cr = D

hT(”fD - fh,DHO,T + ||curl(fD - fh,D )HO,T, vT e Th N
¢ = (ck +CH)2 (17)

where
1/2 1/2
Cs=| D, Ch| amdipi=| D G| (18)
TeT) TeTP

Remark 3.1. The residual character of each term on the right-hand

sides of (15) and (16) is quite clear since if (uy, (py, Aj,)) would be the
exact solution of (9), then they would vanish.

3.2. Reliability of the a posteriori error estimator. Recall the
notation for the velocity error e, =u-uy, the pressure error
e, =D~ Pp and the Lagrange multiplier e; = A — L. The a posteriori

error estimator © is consider reliable if it satisfies
"(eu’ (ep’ ey ))"HXQ S0O+C (19)

In this subsection, we shall prove this estimate. But before, we remains

some analytical tools. We introduce the Clément interpolation operator

I; : HY(Q,) > H}(Q,), with
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H}(Q,)={veC’Q,): yr € PY(T), VT e T},

approximates optimally non-smooth functions by continuous piecewise

linear functions. In addition, we will make use of a vector valued version

of Ij, that is, I} : H(Q,) > H}(Q,), which is defined componentwise
by I,. The following lemma establishes the local approximation

properties of I (and hence of I},), for proof, see ([14], Section 3).

Lemma 3.1 (Clément operator). For each * e {S, D}, there exist

constants ¢, cg > 0, independent of h, such that for all v e HI(Q*) there
holds

lo = Tholo,r < bl oy YT € Ths (20)
and
lo - Iivlo g < cshif 2ol oz VT € Th» VE € &, 21)
where

AT)=UT €Ty :T'NT # 0} and A(E) :=U{T" e T;, : T'NT = 0}.

Proceeding analogously to ([12], Subsection 2.5) (see also [11]), we
first let P: X =HxQ > X':=H'xQ' and P;, : X;, = H;, xQ; —> X},
= Hj, xM}, be the nonlinear operator suggested by the left hand sides
of (6) and (10) with the wvelocity solutions wug e HlFS (Qg) and

us’h € Hh,rs(QS)’ that iS,
[P(U)’ V] = [(al + a2(uS))(u)> V]+ [B(uS’ uD)’ ¢] + [B(VS’ VD)’ w]’
(22)

forall U = ((uS7 up, w)’ V= ((VS’ VD)7 ¢)7 where y = (p’ 7")7 ¢ = (Qa Z:v),

and
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[P, (UL), Vi ]:=[a; +af(up s)(up s, upp)l+ [Blus s, upp), o]
+[B(va s, Vi,D)s ¥n s (23)
for all Uy, = ((up,5, wp,p)s ¥n)s Vo = ((Va,s, Vi, p), 05). Then, setting,

F=(F,0)e HxQ with O=0 on HxQ, it is clear from (9) and
(12) that P and Pj, satisfy

[P(U), V]=[F, V], VVeHxQ, (24)

and
[Ph(Un), Vil=[F, Vi1, VYV, € Hy xQp, (25)
respectively. In addition, we find, as explained in ([12], Subsection 5.2),

that a; has hemi-continuous first order Gateaux derivative D, : X — £
(X, X'). Is this way, the Gateaux derivative of P at W € X is obtained by
replacing [a;(-), -] in (22) by D, (W)(,.) (see [12], Subsection 5.2 for
details), that is,

DP(W)(U, V) = Dy, (W) (u, v) + [ag(ug)(u), v]+[B(vs, vp), ¥]

+ [B(uS’ uD)’ (I)]’

for all U= ((ug,up),v),V=_»(vg,vp), ¢) e HxQ. We deduce (see
[12], Subsection 5.2) the existence of a positive constant Cp, independent

of W and the continuous and discrete solutions, such that the following

global inf-sup condition holds:

DP(W) (U, V
Cp[Ul.q = sup PRW)T, V)

% , YW e HxQ. (26)
Ve(HxQ) " "HxQ

We are now in position of establishing the following preliminary a

posteriori error estimate.

Theorem 3.1. The following estimation holds:
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U - Uh"HxQ < ||R||(HXQ)', 27

where R:HxQ — R is the residual functional given by R(V):=[F -
P,(Uy, ), V], forall V e H x Q, which satisfies

R(Vh) = O, VVh € Hh X Qh' (28)

Proof. The proof is similar to ([11], page 955, proof of Theorem 3.5).

Further details are omitted. O

According to the upper bound (27) provided by the previous theorem, it

only remains now to estimate ”R"(HXQ),' To this end, we first observe that

the functional R can be decomposed as follows:
R(V) = Ri(vg)+ Ry(vp) + R3(gs) + Rylgp) + R5(8) + Rg(v), (29)

for all V=(v,(q, &) eHxQ, with v=(vg,vp),q=1(qg,qp); and

where,

R(vg) =

(fs +2udiv(e(up, ) = Vop, s —plup s - Viup s - % uy, s divuy, g, Vsjs
+ ([pn, s - 2ne(up s)) ngl, vs)ang

+ (= DPns +pPpp—2ung-e(u,g) ng, vg-ng)y

agh
- <#uh’s T + 2ung -e(uh,s)-ﬂr, vg -T>Z,
Ry(vp) = (fp - Vop,p ~K 'wp p, vp)p,
R3(gs) = (a5, V- up s)ss
Ry(ap) = (ap, V- uy p)p,

R5(&) = —(up g -ng +uy p-np, &),
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Rg(vp) = (pPp,p — M, Vs "Bg +Vp -np)y.
In this way, it follows that
I8l eq) < {"RlllHl—S(QS y +IReluaiv, o) *+ IBsli2agy + IRal2eq,y
+ Ryl 125 + IRe|H (D)) (30)

Hence, our next purpose is to derive suitable upper bounds for each one of
the terms on the right hand side of (30). We start with the following
lemma, which is a direct consequence of the Cauchy-Schwarz inequality

and the trace inequality.

Lemma 3.2. The following estimation holds:

2 2
Rillyg (o) <1 O [||rs,T||o,T+ S pagllp

TeT? Eec&(T)NER(Qs)
2
+ Z | - pns +pnp—2ung -e(uys) ngly 5
EeS(T)ﬂSh(i)
1/2
gl 2
+ \/d_uhys~~r+2uns-e(uh,s)-’r
EeE(T)ﬂsh(f) T-K-T 0,E
+ Cs.

In addition, there holds

1/2
. 2
1IR3l 20gy <9 D, Idiveanslirft
TeT)
1/2
. 2
IRall2apy <1 D, ldivenplf 7t

D
Te’Th
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1/2

2
IBsl 125y €4 > lups - ns +wnp nplf g
Eegh(i)

Next, we derive the upper error bound for R, and Rgz. We have the

following lemma:

Lemma 3.3. There holds:

1Ballaqaivop ) 5 D, HE (1£0.0-VPr0-K wyp 6 7 +lewrl(f, p K My, )||3,T)

TeTP
+ Z hg| [(fnp K upp - Voup) T5lg ||(2),E
Ee&(T)NER(QD)
1/2
+ hg|(frn,p -K ap p-Vppp) T ||§ u
Ec&(TNER(6Qp) ’
+Cp,
(31)
and
1/2
I1Rellg-1/2(5) < Z hglpnp =Ml 5 - (32)

EcEp(Y)

Proof. The estimate (32) follows directly from ([11], page 953, Lemma
3.4). Our next goal is to derive the upper bound for R,;, for which,

given vp e H(div Qp), we consider its Helmholtz decomposition

provided in ([21], page 1882, Lemma 3.3). More precisely, there is
Cp >0 such that each vp e H(div Qp) can be decomposed
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as vp = wp +curlpp, where wp € H(Qp) and B e H(Qp) with

-[QD Bp =0, and [Wlg1 (o, ) *+ Bzt (0, < Colvolugy; ap) )-

Then, defining v, p = IP(wp)+ curl(IPBp) € Hy(div Qp), which
can be seen as a discrete Helmholtz decomposition of v, p, and applying

from (28) that Ry(v;, p) = 0, we can write

Ry(vp) = Ry(vp = vy, p) = Re(wp — Wy, p) + Re(curl(Bp —Bp.p)),
(33)

With wh,D = IhD(WD) and Bh,D = curl(IhDBD ) Note that curl(Vph’D) =0.

Thus, we have now by standard Green’s formula in two spatial dimensions

on each T, the inequality:

Ry(vp) s Z {(fp = Vou.p —~K uy p, wp = Wi p)rp
TeT?

— (curl(fp - K_luh,D ), Bp — Br, D )7

+ ((fp = Von.p K 'y p)-tp, Bp = Br.p)or }-

We introduce the approximation f p of fp, and then the estimate (31)

follows by applying Cauchy-Schwarz inequality and the Clément operator

estimations of Lemma 3.1. O

We have now the main result of this subsection:

Theorem 3.2. Assume that fg € 12(Qg) and fp e L2(Qp) satisfy
the conditions of Theorems 2.1 and 2.2. Let (u,(p, 1)) € Hx Q be the exact
solution and (wy,(pp, M) € Hy, x Q), be the finite element solution of

coupled problem Navier-Stokes/Darcy. Then, the a posteriori error

estimator © satisfies (19).
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Proof. Follows directly from Lemmas 3.2 and 3.3. O

3.3. Efficiency of the a posteriori error estimator. In order to derive
the local lower bounds, we proceed similarly as in [9] and [10] (see also
[20]), by applying inverse inequalities, and the localization technique
based on simplex-bubble and face-bubble functions. To this end, we recall

some notation and introduce further preliminary results. Given 7' € 7,
and E € &(T), we let by and by be the usual simplex-bubble and face-
bubble functions, respectively (see (1.5) and (1.6) in [40]). In particular, by
satisfies by e P3(T'), supp(by ) = T, by =0 sur o7, and 0 < bp <1 on T.
Similarly, by e P(T), supp(by) c o ={T" € Tp : E e &T")}, by =0
on 0T\ E and 0 <bg <1 in og. We also recall from [39] that, given
k € N, there exists an extension operator L : C(E) — C(T) that satisfies
L(p) € P*(T") and L(p)‘E = p, Vp € P¥(E). A corresponding vectorial

version of L, that is, the componentwise application of L, is denoted by L.

Additional properties of bp, by, and L are collected in the following

lemma (see [39]):

Lemma 3.4. Given k € N*, there exist positive constants depending

only on k and shape-regularity of the triangulations (minimum angle
condition), such that for each simplex T and E e &E(T') there hold

lalo,7 < laby*lo.7 < lalo. - Va € PE(T), (39)
IV(abr Mo, < P7'llally 7o Va € PH(T), (35)

Bl 5 < 184 2plo. < IPlo 5 V0 < PF(E), (36)
1L, + keI @y 7 < B 1Dl 5 VP € PRE).  (37)

To prove local efficiency for © <« Q = Qg U ZU Qp, let us denote by
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2 — 2 2 2
v @ o2, = Y h M2, +lasl?, ) IV o laivsonoy)
Ec&p(oNQg)

2 2
+ ||qD||L2(meD) + ||§||1/2,zma’

where
op =U{T" e T} : E c &T)}. (38)

Recall further the notation for the velocity error e, = u-—uy, the
pressure error e, = p — p; and the Lagrange multiplier e, = A —&j. The

main result of this subsection can be stated as follows:

Theorem 3.3. Assume that fg € 12(Qg) and fp e L2(Qp) satisfy
the conditions of Theorem 2.1 and 2.2. Let (u, (p, 1)) € Hx Q be the exact
solution and (uy, (pp, Ap)) € Hy, x Qp, be the finite element solution of
coupled problem Navier-Stokes/Darcy. Then, the local error estimator Op
satisfies:

Or < (ews (eps ez, + D, Crs VT €T, (39)
T'C(JN)T
where &y is a finite union of neighbouring elements of T.

Proof. To establish the lower error bound (39), we will make extensive
use of the original system of equations given by (1) to (5), which 1is
recovered from the mixed formulation (6) by choosing suitable test
functions and integrating by parts backwardly the corresponding

equations. Thereby, we bound each term of the residual separately.
(1) Element residual in Qg. Set wp = rg pbyp € [H(T) and
consider

(rS,T7 wr )T =
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IT(fs +2udiv(e(uy,s)) - Vop s —p(up,s - Vuy s - % uy, g div uh,S) W
Introduce fg and use the formulation (6) to get

r . = fg - f .

JT S, T WT IT( s —fs.n) wr
+IT(2M9(US) tVwr ) + PIT[(US Vug]-wp —pg div wp
+ J.T[%di\’(e(uh,s )= Vpp s —p(ups - Vuy sl wr

—J. [Buhsdivuh Sj|-WT.
T 2 5 )
Integrating by parts we get

J.TrS’T W= J.T(fs _fS,h)'WT + ZHJ.Te(euS ) : V(WT)— J‘TepdiV wr

+ IT[P(HS Vug - %uh,s divuy g - p(up,s - V)uh,S} Wy
Cauchy-Schwarz inequality implies that

ITI'S,T wr < |fs —£5 nlo zlwrlo 7 + Cullewg s 7 +llepg lo, 7)) IVWr o, 7

+

IT[P(us -Vug —%uh,s divuy, g - p(uy, s ‘V)uh,S} -wrl.

The inverse inequalities (34) and (35), the obvious relation [wr|, , <
|rs 7o p and the fact that [ugl, g (see [17], Lemma 5 and Lemma 6)
and |ug pl| g (see [17], Lemma 12) are both bounded lead to

les,zlo,7 < Ifs = f£s, 1l + AT IVeuglo, 7 + ' lepgllo 7

As hit < hi, VE e &(T), then we deduce
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Ixs.7llo.z = Il (eu, (ep, el 1y +Cs- (40)
, »

(2) Element residual in Qp. Set wyp = rp pbp € [H{(T)P?, we use

(6) and integrate by parts to obtain:

1
JTI'D,T Wy = IT(fh,D -K 7 u, p-Vppp)-wr
1
= ~[T(fh,l) -K 7 u, p - Vo p) wr
+ .[ (K_luD —fp)-wyp — ppdivwyp
T

- J.T_ (fp —fn,p)-wp + JT(K_le“D Wy +ep,divwy).

As before Cauchy-Schwarz inequality and the inverse inequalities (34)-
(35) lead to,

hrlep,zlo,r < hel€p = fa,plo 7 + 1K ewy lo 7 + lepp llo, 7
Thereby,
hrlep,7lo 7 S I(ew, (ep, &)y uy + ED- (41)
(3) Curl element residual in Qp. For T eT £ , we set

Cr :curl(fh,D—Kfluh’D) and wp = Cpbp. Hence we notice that

curl(wy ) belongs to H and is divergence free, therefore by (6) we have

a(up, curl(wy)) = (fp, curl(wy ))p,

or equivalently,
J (Klup - fp) - curl(wy ) = 0. (42)
T

But by Green’s formula, we may write
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-[T Crwyp = J.Tcurl(fh’D —fpwyp + .[T(fD - K_luh’D ) - curl(wy ),
and by using (42), we deduce that
J.T Crwp = J-Tcurl(fh,D —fpwr + J.T[K_l(uD —uy, p)]-curl(wy).
By Cauchy-Schwarz inequality, we obtain
[ Crwr < lewnl(®,p ~ 0 plwrly r + 1K euy o plewrliorl g-
Again the inverse inequalities (34)-(35) allows to get
hplearl(, p =Ky plg 7 < 1K ewy o,z + hrllewrl(fy, p = £p)lg 7
let
hplleurl(f, p =K My, p)lo. 7 < |l (ew, (ep, &)l wy +ED- (43)
(4) Divergence element in Q,, * € {S, D}. We directly see that
div(u, —up ,) = - divuy ., V*e{S, D},

hence by Cauchy-Schwarz inequality, we conclude

[divap, o 7 < |divey, o *<{S, D} (44)

(5) Normal jump in Qg. For each edge E € £,(Qg), we consider
wg =Ty UTy. As Iy, € [PO(E)]?, we set
wg = ~Jg npbr € [Hy(wg)P.
First the weak formulation (6) yields

a(u, wg) +b(wg, p) = (£, wg)y,,,

that is equivalent to
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o fswe =], [netus)-psil: e(wp)
+ IWE [p(us - Vus] - wg

+ [ [ps-2ue(ug)hng - wp. (45)
oog
By elementwise partial integration, we further have

| Tpmgwp = [ (2uelw,s) - pasD): elwp)
E OF

2
- ZJ (= 2ndive(uy, g)+ Vppg)- W
ol
Hence, by previous identity (45), we get

2
- JEJE,nE Wg = ZIT [fs — (- 2udive(uy s)+ Vpp, )] wg
i1=1" "1
| 2uelew, 5) - epgl]: elwp)
L)

+ JwE[P(us Vug] - wg.

We introduce the approximation fg; of fg, use the Cauchy-Schwarz
inequality, the inverse inequalities (36)-(37) and the fact that |ug]; g

(see [17], Lemma 5 and Lemma 6) is bounded, to get
2
1/2
19E ng oz < hyl [Z(llfs ~fhslo. 7 + s,z llo,7.)
=1

+ hg 2(|v(e +e

us )"O,wE pPSs "0,wE )

As hp <1, then by (40), we obtain

”JE,nE ”0,E s " (eu’ (ep’ en ))"h,wE + QS- (46)



66 KOFFI WILFRID HOUEDANOU et al.

(6) Interface elements on Z To estimate the interface elements,

we fix an edge E in Z and for a constant ry fixed later on and a unit vector N,

we consider wy = (Wg g, wg p) such that:

The vector wpg clearly, belongs to H. Hence the weak formulation (6)

yields
a(u, wg) +b(wg, p) = (£, wg)y,,,

that is equivalent to

_[T (2ue(ug): e(wg) - pgdivwg ) + _[T (K 'up - wg - ppdivwg)
S S

Hog J‘ _
+————(ug -7, w “T)g + plug -Vijug|-wg = (f, w ,
Jroron S E,S )E wE[( S ) S] E = E)‘DE

(48)

where Tg (resp., Tp) is the unique triangle included in 53 (resp., Qp)

having E as an edge.

On the other hand, integrating by parts in Tg and Tp yields

JT (2ue(uy s): e(wg ) - ppsdivwg g)
S

-1 .
+JT (K uh’D 'WE,D —phdeIV WE,D)
D

pog

+ ——=—=(u ST, W T
m( h,S E,S )E

= —IT (2udive(uy, s)-Vpr s) - Wg s
S

1
+IT (K"wp p-Wgp+VPrp) WED
D
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pog

ﬁ(uh,s *T, WE. S 'T)E

+

- IE([ph,S]EWE,S ‘ng - 2u[e(uy sngl-wg g).

Subtracting this identity to (48) we find

Hog
p wr -ngp —2u(e(u n; - w -—(u - T, W - T
IE([ h]E E E “( ( h,S) E E,S) m( h,S E,S )E

- ITS(Zue(euS): e(wg s)—epdivwg g)
-1 .

+J.TD(K euD'WE,D _edeIVWE,D)

porg J‘
+ (e T, W “T)gp — plug -Vyug|-w

— — (Cug Es TE Ts[( s Vus]-wg

- IT (fS + 2udiv e(uh,s)—Vph’S).WES

S

-1
—j (fp —-Ku,. p -Voup) WE D
Tp

In that last terms introducing the element residual r, 7, * € {S, D}, we

arrive at

poLg
p wgr -ng —2u(e(u ng - w - —(u ST, W - T
IE([ nslgwr -ng —2u(e(u, sng -wg g) m( h S £,S TE

- J‘TS (Zue(eus ):e(wg s)-— epgdiv wgs)
-1 .
+JTD(K euD 'WE,D —ede1VWE7D)
Hog J‘
+ 1€ - T, W CT)p — plug -Vjug|-w
/T__K.T( ug E,S )E Ts[( s -Vugl-wg

- I (fs —fp s +rs7) WE S -I (fp ~fpn.p +rp,7) WE D (49)
Ty Tp
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(a) To estimate the term

2
o gh

—<%—u; g -7+2ung -e(uy g) T
m h,S S h,S oE

s

Ec&(TNEL(T)
we take

g

g = —/]——
NT-K-T

u, s T+2ung 'e(uh,s)~T and N = 7.

With this choice, wg -ng + wg -np =0 on Z And thus, the identity

(49) and the inverse inequality (36) yield,

Il < [, (2ueleus): elwn,s) = epiv wes)

1 .
+JT (K" ey, "wg p —ep,divwg p)
D

Hog J‘
+ ey T, W ‘T — ug -V)ug|-w
/7‘1"5-7( ug ES Tk TS[P( s Vug] E,S

—J (fs —fp g +rs 1) Wg s —J (fp —fn.p +rp.7) WE D
TS TD

Hence Cauchy-Schwarz inequality, the inverse inequalities (37), the upper
error bound of |r, 7|, , [i.e., estimates (40) and (41)], and the fact that

ug], g (see [17], Lemma 5 and Lemma 6) is bounded lead to

agh
ﬁuh,s T+ 2ung -e(uy g)- T ok < ey, (e, e ))"hmE + T;E Crs
(50)
with o = Tg U Tp.
(b) To estimate the term
Z | - Ph.s + Ph.p — 2ung - e(w; 5) ngli g,

Ece(TNER(T)
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we take
'E = Ph,p — Ph,s +2ung -e(u; g)-ng and N = ng.

As before the identity (49), the inverse inequalities (36) and (37), the
upper bounds of |r, 7|y, * € {S, D} and of (46), and the fact that

ug], g (see [17], Lemma 5 and Lemma 6) is bounded lead to

|lpn, 0 = Pp,s +2ung - e(up, 5)-ngly g < [(eu (ep. &)y oy + Z Cpr.
T'cog

(51)

(¢) For E € £,(X), the term Y. hglpnp - ).h||(2) g is bounded as
Eeé’h(i)

follows:

Z helonp - Mo g < Z he(h =2l g + 1% = pa, Dl )
Eccp(T) Ee&p(X)

2 2
< A - 7‘h"1/2,z < (e, (eps € ))"’“DE (52)
(d) Analogously to ([4], Lemma 4.7), the term

Z [up,s -ng +up p-nply g can be bounded by

EcE(Y)
lup,s ns +wpp nplf p < hytlus —uy sl5 7 +hy V(s —wp )5 7
2 % 11 >
+llup = wp, plo, 7, + Ay ldiviap —up pllg 7,

where E =0Tg N0Tp. Now, as for each * e {S, D}, hy, <1 and hil < hgt,
then we have the estimate
lup,s -ng +upp-nply g < (eu (e, &)y - With o = Ts U Tp.

(53)
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(7) Tangential jump in Qp. Finally, for E € £,(Qp), the terms

hg| [(fn.p ~ K upp - Vopp) Trlg "(2),E’
Eetpr(Qp)

and > hg|l(Enp - K_luh,D -Vpup) TE ||g g» respectively, are
Eeg&,(0Qp) ’

bounded analogously as in ([11], Lemma 3.16) by:

h| [(fn.p ~ K p - Vopp) TElg ||3,E < fup - uh,D"?),wE (54)

2
s ”(eu’ (ep’ € ))"h,mE’
for all E € £,(Qp), where the set wg is given by
wg =UT e TP . E e &T)};

and

hgl (fn,p - K "y p - Vou p) - 7Ely 5 < lup - uh,D||(2),TE (55)

S "(eu’ (ep’ ey ))”}%f‘DE’

for all E € £,(0Qp ), with Tg, the triangle of Tf having E as an edge.

The estimates (40), (41), (43), (44), (46), (50), (51), (52), (53), (54), and (55)

provide the desired local lower error bound of Theorem 3.3. O
4. Summary

In this paper, we have discussed a posteriori error estimates for a
finite element approximation of the Navier-Stokes/Darcy system. A
residual type a posteriori error estimator is provided, that is both reliable
and efficient. Many issues remain to be addressed in this area, let us
mention other types of a posteriori error estimators or implementation

and convergence analysis of adaptive finite element methods. Further, it
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is well known that an internal layer appears at the interface z as the

permeability tensor degenerates, in that case anisotropic meshes have to

be used in this layer (see for instance [15, 27]). Hence we intend to extend

our results to such anisotropic meshes.
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