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Abstract 

We consider in this paper, a new a posteriori residual type error estimator of a 
conforming mixed finite element method for the coupling of fluid flow with porous 
media flow on isotropic meshes. Flows are governed by the Navier-Stokes and 
Darcy equations, respectively, and the corresponding transmission conditions are 
given by mass conservation, balance of normal forces, and the Beavers-Joseph-
Saffman law. The finite element subspaces consider Bernardi-Raugel and Raviart-
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Thomas elements for the velocities, piecewise constants for the pressures, and 
continuous piecewise linear elements for a Lagrange multiplier defined on the 
interface. The a posteriori error estimate is based on a suitable evaluation on the 
residual of the finite element solution. It is proven that the a posteriori error 
estimate provided in this paper is both reliable and efficient. In addition, our 
analysis can be extended to other finite element subspaces yielding a stable 
Galerkin scheme. 

1. Introduction 

There are many serious problems currently facing the world in which 
the coupling between groundwater and surface water is important. These 
include questions such as predicting how pollution discharges into 
streams, lakes, and rivers making its way into the water supply. This 
coupling is also important in technological applications involving 
filtration. In particular, for specific applications, we refer to flow in vuggy 
porous media appearing in petroleum extraction [1, 2], groundwater 
system in karst aquifers [19, 31], reservoir wellbore [3], industrial 
filtrations [25, 32], topology optimization [23], and blood motion in tumors 
and microvessels [35, 38]. We refer to the nice overview [18] and the 
references therein for its physical background, modelling, and standard 
numerical methods. One of the most popular models utilized to describe 
the aforementioned interaction is the Navier-Stokes/Darcy (or Stokes-
Darcy) model, which consists in a set of differential equations where the 
Navier-Stokes (or Stokes) problem is coupled with the Darcy model 
through a set of coupling equations acting on a common interface given by 
mass conservation, balance of normal forces, and the so called Beavers-
Joseph-Saffman condition. The Beavers-Joseph-Saffman condition was 
experimentally derived by Beavers and Joseph in [6], modified by Saffman 
in [37], and later mathematically justified in [28-30, 34]. 

A posteriori error estimators are computable quantities, expressed in 
terms of the discrete solution and of the data that measure the actual 
discrete errors without the knowledge of the exact solution. They are 
essential to design adaptive mesh refinement algorithms which equi-
distribute the computational effort and optimize the approximation 
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efficiency. Since the pioneering work of Babuška and Rheinboldt [5], 
adaptive finite element methods based on a posteriori error estimates 
have been extensively investigated. 

A posteriori error estimations have been well-established for the 
coupled Stokes-Darcy problem on isotropic meshes, mainly for 2D domains 
[4, 13, 16, 21, 33] and recently on anisotropic meshes [26, 27]. However, 
only few works exist for the coupled Navier-Stokes/Darcy problem, see for 
instance [11, 24]. Up to the author’s knowledge, the first work dealing 
with adaptive algorithms for the Navier-Stokes/Darcy coupling is [24], 
where an a posteriori error estimator for a discontinuous Galerkin 
approximation of this coupled problem with constant parameters is 
proposed. In [11], the authors have derived a reliable and efficient 
residual-based a posteriori error estimator for the three dimensional 
version of the augmented-mixed method introduced in [12]. The finite 
element subspaces that they have employed are piecewise constants, 
Raviart-Thomas elements of lowest order, continuous piecewise linear 
elements, and piecewise constants for the strain, Cauchy stress, velocity, 
and vorticity in the fluid, respectively, whereas Raviart-Thomas elements 
of lowest order for the velocity, piecewise constants for the pressure, and 
continuous piecewise linear elements for the traces, are considered in the 
porous medium. The authors in [17] consider the standard mixed 
formulation in the Navier-Stokes domain and the dual-mixed one in the 
Darcy region, which yields the introduction of the trace of the porous 
medium pressure as a suitable Lagrange multiplier. The finite element 
subspaces defining the discrete formulation employ Bernardi-Raugel and 
Raviart-Thomas elements for the velocities, piecewise constants for the 
pressures, and continuous piecewise linear elements for the Lagrange 
multiplier. An a priori error analysis is performed with some numerical 
tests confirming the convergence rates. 

In this work, we develop an a posteriori error analysis for the finite 
element method studied in [17]. The a posteriori error estimate is based on 
a suitable evaluation on the residual of the finite element solution. We 
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further prove that our a posteriori error estimator is both reliable and 
efficient. These main results are summarized in Theorems 3.2 and 3.3. 
The difference between our paper and the reference [11] is that our 
analysis uses the standard mixed formulation in the Navier-Stokes 
domain and the dual-mixed one in the Darcy region, and another family of 
finite elements to approach the solution. In addition, it’s independent of 
the finite elements employed to stabilize the scheme in [17]. Indeed, no 
interpolation operator for example linked to the finite elements used in 
this work is exploited in our a posteriori error analysis. Consequently, it 
can be extended to other finite element subspaces yielding a stable 
Galerkin scheme. 

The rest of this work is organized as follows. Some preliminaries and 
notation are given in Section 2. In Section 3, the a posteriori error 
estimates are derived. The reliability analysis is carred out in Subsection 
3.2, whereas in Subsection 3.3 we provide the efficiency analysis. Finally, 
we offer our conclusion and the further works in Section 4. 

2. Preliminaries and Notation 

2.1. Model problem. For simplicity of exposition we set the problem in 

.2R  However, our study can be extended to the 3D case with few 
modifications [17, 33]. We consider the model of a flow in a bounded 

domain ,2R⊂Ω  consisting of a porous medium domain ,DΩ  where the 

flow is a Darcy flow, and an open region ,\ DS ΩΩ=Ω  where the flow is 

governed by the Navier-Stokes equations. The two regions are separated 

by an interface .SD Ω∂Ω∂=∑ ∩  Let ∈∗Ω∂=Γ ∑∗∗ ,\  { }., DS  Each 

interface and boundary is assumed to be polygonal. We denote by Sn  

(resp., Dn ) the unit outward normal vector along SΩ∂   (resp., DΩ∂ ). 

Note that on the interface ,∑  we have .DS nn −=  The Figure 1 gives a 

schematic representation of the geometry. 
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Figure 1. Domains for the 2D Navier-Stokes/Darcy model. 

For any function v defined in ,Ω  since its restriction to SΩ  or to DΩ  

could play a different mathematical roles (for instance their traces 

on∑ ), we will set SvvS Ω=  and .DvvD Ω=  

In { }DS,, ∈∗Ω∗  we denote by ∗u  the fluid velocity and by ∗p  the 

pressure. The motion of the fluid in SΩ  is described by the Navier-Stokes 

equations 
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while in the porous medium ,DΩ  by Darcy’s law 
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Here, 0>µ  is the dynamic viscosity of the fluid, ρ  is its density, Sf  is a 

given external force, Df  is a given external force that accounts for gravity, 
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i.e., ,gf ρ=D  where g is the gravity acceleration, div is the usual 

divergence operator and e is the strain rate tensor defined by: 

( ) ,2,1,2
1:  jix

v
x
vv

i

j

j
i

ij 







∂
/∂

+
∂
/∂=/e  

and [ ( )] 22×∞ Ω∈ DLK  a symmetric and uniformly positive definite tensor 

in DΩ  representing the rock permeability κ  of the porous medium 

divided by the dynamic viscosity µ  of the fluid. Throughout the paper, we 

assume that there exits 0>C  such that 

,2
2R

ξ≥ξ⋅⋅ξ CK  

for almost all ,Dx Ω∈  and for all .2R∈ξ  

Finally, we consider the following interface conditions on :∑  

,0=⋅+⋅ DDSS nunu   (3) 

( ) ,2 DSSSS pp =⋅⋅µ− nuen   (4) 

( ) ,ττττ ⋅−=⋅⋅
µα
⋅⋅

SSS
d

uuenκ   (5) 

where dα  is a dimensionless constant which depends only on the 

geometrical characteristics of the porous medium. Here, Equation (3) 
represents mass conservation, Equation (4) the balance of normal forces, 
and Equation (5) the Beavers-Joseph-Saffman conditions. 

Equations (1) to (5) consist of the model of the coupled Navier-Stokes 
and Darcy flows problem that we will study below. 

2.2. The variational formulation. In this subsection, we introduce       
the weak formulation derived in ([17], Subsection 2.2) for the coupled 
problem given by (1) to (5). To this end, let us first introduce further 

notations and definitions. In what follows, given { } ( ),,,, 2
∗Ω∈∈∗ LvuDS  

[ ( )] ,, 22
∗Ω∈ Lvu  and [ ( )] ,, 222 ×

∗Ω∈ LNM  we set 
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( ) ( ) ( ) ,::,and,.:,,:, NMNMvuvu ∫∫∫
∗∗∗ Ω

∗
Ω

∗
Ω

∗ === uvvu  

where, given two arbitrary tensors M and N, 

( ) ,tr::
2

1,
ij

ji
ij

t NM∑
=

== NMNM  

where the superscript t denotes transposition. 

We use the standard terminology for Lebesgue and Sobolev spaces. In 
addition, if O  is a domain, given and R∈r  and [ [,,1 ∞∈p  we define 

( ) [ ( )]2: OO rr H=H  and ( ) [ ( )] .: 2OO pp L=L  For ,0=r  we write ( )O2L  

and ( )Γ2L  instead of ( )O0H  and ( ),0 ΓH  respectively, where Γ  is a closed 

Lipschitz curve. The corresponding norms are denoted by O,r⋅  (for 

( )OrH  and ( )OrH ), Γ⋅ ,r  (for ( )ΓrH ) and ( )OpL⋅  (if 2≠p ). Also, the 

Hilbert space 

( ) { ( ) ( )},div::;div 22 OOO L∈∈= wLwH  

with norm ,,div O⋅  is standard in the realm of mixed problems (see, e.g., [8]). 

On the other hand, the symbol for the ( )Γ2L  inner product 

( ),,,:, 2 Γ∈λξ∀ξλ=λξ ∫ΓΓ L  

will also be employed for their respective extension as the duality product 

( ) ( ).2121 Γ×Γ− HH  In addition, given two Hilbert spaces 1H  and ,2H  

the product space 21 HH ×  will be endowed with the norm 

.
21

11 HHHH ⋅+⋅=⋅ ×  Hereafter, given a nonnegative integer k  and 

a subset S of ( )SlPR ,2  stands for the space of polynomials defined on S of 

degree .l≤  Finally, we employed 0 as a generic null vector. 
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The unknowns in the variational formulation of the Navier-
Stokes/Darcy coupled problem and the corresponding spaces will be: 

( ) ( ) ( ) ( ),,;div,, 221
DDDDSSSS LpLp

DS
Ω∈Ω∈Ω∈Ω∈ ΓΓ HuHu  where 

( ) { ( ) },on:: 11
SSSS
Γ=Ω∈=ΩΓ 0vHvH  

( ) { ( ) }.on0:;div:;div DDDDD Γ=⋅Ω∈=ΩΓ nvHvH  

In addition, analogously to [22] we need to define a further unknown on 
the coupling boundary: 

( ).: 21 ∑∈=λ HpD  

Note that, in principle, the space for Dp  does not allow enough regularity 

for the trace λ  to exist. However, the solution of Darcy equations has the 

pressure in ( ).1
DH Ω  

Next, for the derivation of the weak formulation of (1)-(5), we define 
the space 

( ) ( ) ,0:: 22
0







 =Ω∈=Ω ∫ΩqLqL  

and we group the unkowns and spaces as follows: 

( ) ( ) ( );;div:,: 1
DSDS DS

Ω×Ω=∈= ΓΓ HHHuuu  

( ) ( ) ( ),:, 212
0 ∑×Ω=∈λ HLp Q  

where ,: DS DS ppp ΩΩ χ+χ=  with ∗Ωχ  being the characteristic function 

for { }., DS∈∗  

The weak formulation of the coupled problem (1)-(5) can be stated as 
follows [17]: Find ( ) ( ) ( )( ) ,,,,, QHuuu ×∈λ=/ pv DS  such that 

( ) ( )( ) ( ) ( )

( )( ) ( )





∈ξ∀=ξ

∈=∀=λ+

,,,0,,

,:,,,,;

Qub

Hv,vvvFvbvuua

qq

p DSS
 (6) 
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where ( ) ( ) R→××ΩΓ HHHa SS
1:  and R→× QHb :  are the forms 

defined by 

( ) ( ) ( ) ( ),,,;,:,; DDDSSSSSSSS AOA vuvuwvuvuwa ++=  

( )( ) ( ) ( ) ,,div,div,:,, ∑ξ⋅+⋅+−−=ξ DDSSDDSS qqq nvnvvvvb  

with 

( ) ( ) ( )( ) ,,,2:,
∑

⋅⋅
⋅⋅

µα
+µ= ττ

ττ SS
d

SSSSSSA vuveuevu
κ

 

( ) (( ) ) ,,:,; SSSSSSSSO vuwvuw ∇⋅ρ=  

( ) ( ) ,,:, 1
DDDDDDA vuKvu −=  

and ( )vF  is the linear functional R→HF :  defined as 

( ) ( ) ( ) ( ) .,:,,, HvvvvfvfvF ∈=∀+= DSDDDSSS  

We define the bilinear form 1a  and the nonlinear form 2a  by : 

( )[ ] ( ) ( ),,,:,1 DDDSSS AAa vuvuvu +=   (7) 

( ) ( )[ ] ( ),,;:,2 SSSSS Oa vuuvuu =   (8) 

and we set, for ( ) ( )DSDS vvvuuu ,,, ==  and ( )ξ=φ ,q  

( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ],,,:,,, 21 vuuvuvvuuuA SDSDSS aa +=  

( )[ ] ( ) ,,,:,, ∑ξ⋅+⋅+=φ DDSSDS q nvnvvbvvB  

[ ] ( ).:, vFv =F  

In all the foregoing terms, [ ]⋅⋅,  denotes the duality pairing induced by the 

corresponding operators. Then, the formulation (6) is equivalent to, find 
( ) ,, QHu ×∈/v  with ( )DS uuu ,=  and ( )λ=/ ,pv  such that: 
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( ) ( )[ ] ( )[ ] [ ]

( )[ ]





∈φ∀=φ

∈∀=/+

.,0,

,,,,,

QuB

HvvvBvuuA FvS
 (9) 

This problem has a unique solution as proved in ([17], Subsection 2.2). 

Theorem 2.1 ([17], Subsection 2.2, Theorem 2). Assume that 2Lf ∈S  

( )SΩ  and ( )DD Ω∈ 2Lf  satisfy the conditions (36) and (43) of the paper 

[17]. Then, there exists a unique solution ( )( ) QHu ×∈λ,, p  of (9). In 

addition, there exists a constant ,0>C  independent of the solution, such 
that 

( )( ) ( ).,, ,0,0 DS DSCp ΩΩ× +≤λ ffu QH  

2.3. Finite element discretization. Let S
hT  and D

hT  be respective 

triangulations of the domains SΩ  and DΩ  formed by shape-regular 

triangles of diameter Th  and denote by Sh  and Dh  their corresponding 

mesh sizes. Assume that they match on ∑ so that D
h

S
hh TTT ∪=:  is a 

triangulation of .: DS ΩΩ=Ω ∑ ∪∪  Hereafter { }.,max: DS hhh =  

For each ,D
hT T∈  we consider the local Raviart-Thomas space of the 

lowest order [36]: 

( ) ( ) ( ) ( ){ },,,1,0,0,1span: 210 xxTRT =  

where ( )21, xx  is a generic vector in .2R  

In addition, for each ,S
hT T∈  we denote by BR(T) the local Bernardi-

Raugel space (see [7]): 

( ) [ ( )] { },,,span: 132231321
21 nnn ηηηηηη⊕= TTBR P  

where { }321 ,, ηηη  are the baricentric coordinates of T, and { }321 ,, nnn  

are the unit outward normals to opposite sides of the corresponding 
vertices of T. Hence, we define the following finite element subspaces: 
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( ) { ( ) ( ) },,:: 1 S
hTSSh TTBR T∈∀∈Ω∈=Ω vHvH  

( ) { ( ) ( ) },,:;div: D
hoTDDh TTRT T∈∀∈Ω∈=Ω vHvH  

( ) { ( ) ( ) }.,:: 0
2

hTh TTqLqL T∈∀∈Ω∈=Ω P  

The finite element subspaces for the velocities and pressure are, 
respectively, 

( ) ( ) ( ),: 1
, SShSh SS ΩΩ=Ω ΓΓ HHH ∩  

( ) ( ) ( ),;div:, DDhDh DD ΩΩ=Ω ΓΓ HHH ∩  

( ) ( ) ( ).: 2
00, ΩΩ=Ω LLL hh ∩  

In turn, in order to define the discrete spaces for the unknowns on the 

interface ,∑  we denote by ∑h the partition of ∑ inherited from 

( )D
h

S
h TT or  and we assume, without loss of generality, that the number 

of edges of ∑h is even. Then, we let h2∑  be the partition of ∑ arising 

by joining pairs of adjacent edges of .∑h Note that since ∑h is inherited 

from the interior triangulations, it is automatically of bounded variation 
(i.e., the ratio of lengths of adjacent edges is bounded) and, therefore, so is 

.2∑ h  If the number of edges of ∑h is odd, we simply reduce it to the 

even case by joining any pair of two adjacent elements, and then construct 

∑ h2 from this reduced partition. Then, we define the following finite 

element subspace for ( ) :21 ∑∈λ H  

( ) { ( ) ( ) }.,::
2

10 ∑∑∑ ∈∀∈ξ∈ξ=Λ
hEhhh EEC P  

In this way, grouping the unknowns and spaces as follows: 

                 ( ) ( ) ( );,: ,,,, DhShDhShh DS Ω×Ω∈= ΓΓ HHuuu  
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( ) ( ) ( ),:, 0, ∑Λ×Ω=∈λ hhhhh Lp Q  

where ,: ,, DS DhShh ppp ΩΩ χ+χ=  the Galerkin approximation of (6) 

reads: Find ( )( ) hhhhh Qp ×∈λ Hu ,,  such that, 

( ) ( )( ) ( ) ( )
( )( ) ( )




∈ξ∀=ξ
∈=∀=λ+
.,,0,,

,,:,,,,;,

hh

hDShhhShh
qq

p
Qub

HvvvvFvbvuua

 (10) 

Here ( ) ( ) R→××ΩΓ hhShh S HHHa ,:  is the discrete version of a 

defined by 

( ) ( ) ( ),,;,;,; SSSSSSh vuwJvuwavuwa +=   (11) 

for all ( ),,, ShSSS Ω∈ Hwvu  and where ( )SSSS vuwJ ,;  is defined by: 

( ) ( ) .,div2:,; SSSSSSSS vwuvuwJ ρ=  

As before, we set, for ( ) ( )DhShhDhShh ,,,, ,,, vvvuuu ==  and      

=φh  ( )hhq ξ,  

[ ( ) ( ) ( )] ( )[ ] [ ( ) ( ) ],,,:,,, ,21,,,,, hhSh
h

hhDhShDhShShh aa vuuvuvvuuuA +=  

with, 

[ ( ) ( ) ] [ ( ) ( ) ] ( ).,;,:, ,,,,2,2 ShShShShhShhhSh
h aa vuuJvuuvuu +=  

Thus, the formulation (10) is equivalent to, find ( ) ,, hhhh v QHu ×∈/  with 

( )DhShh ,, , uuu =  and ( )hhh pv λ=/ ,  such that: 

[ ( ) ( ) ] ( )[ ] [ ]
( )[ ]




∈φ∀=φ
∈∀=/+

.,0,
,,,,,,

hhhh

hhhhhhShh v
QuB

HvvvBvuuA F
 (12) 

Theorem 2.2 (See [17], Subsection 3.2, Theorem 4 and Theorem 6). 

Assume that ( )SS Ω∈ 2Lf  and ( )DD Ω∈ 2Lf  satisfy the conditions (71), 

(78), (82), and (86) of the reference [17]. Then, there exists a unique  
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solution ( )( ) hhhhh p QHu ×∈λ,,  to problem (12) and if the solution 

( )( ) QHu ×∈λ,, p  of the continuous problem (9) is smooth enough, then 

we have: 

( )( ) ( )( ) (
DDS DDShhh hpp ΩΩΩ× ++λ−λ ,1,1,2 div,,,, uuuuu QH   

).,23,1 ∑λ++ Ωp  

Here and below, in order to avoid excessive use of constants, the 
abbreviation yx   stand for ,cyx ≤  with c a positive constant independent 

of yx,  and .hT  

For ( ) hDS Hvvv ∈= ,  and for ( ) ,, hq Q∈ξ  we can subtract (6) to (10) to 

obtain the Galerkin orthogonality relation: 

( ) ( ) ( ) ( )SShSh
h
SSSS

h
SDDSs OOAA DS vuuvuuveve uu ,;,;,, ,,−++  

( ) ,0, =+ yp eeb  

(( ) ( )) ,0,,, =ξq
DS ueueb  

where here and below, the errors in the velocity, in the pressure and in 
the Lagrange multiplier are respectively defined by 

{ }.,,and;: , DSeppe hhph ∈∗λ−λ=−=−= λ∗∗∗
uueu   (13) 

We end this section with some notation again. For each ,hT T∈  we 

denoted by ( ) ( )( )TT NE .,resp  the set of its edges (resp., vertices) and set 

( ) ( )., TT
hh T

h
T

h NNEE
TT
∪∪
∈∈

==  For ,Ω⊂A  we define 

( ) { } ( ) { }.,:and:: ANANAEAE ∈∈=⊂∈= xxEE hhhh  

With every edge ,hE E∈  we introduce the outer normal vector by  

( ) ., yx nn=n  Furthermore, for each face E, we fix one of the two normal 

vectors and denote it by .En  In addition, we introduce the tangent vector 
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( )xy nn ,: −== nτ  such that it is oriented positively (with respect to 

T). Similarly, set .: EE n=τ  

For any hE E∈  and any piecewise continuous function ,ϕ  we denote 

by [ ]Eϕ  its jump across E in the direction of :En  

[ ] ( )
( ) ( )

( )





−ϕ−

−ϕ−+ϕ
=ϕ

+→

+→+→

.edge/faceboundaryaforlim

,edge/faceinterioranforlimlim
:

0

00

Etx

Etxtx
x

Et

EtEt
E

n

nn
 

Furthermore one requires local subdomains (also known as patches). 
As usual, let Tw  be the union of all elements having a common face with 

T. Similarly, let Ew  be the union of both elements having E as face (with 

appropriate modifications for a boundary face). By xw  we denote the 

union of all elements having x as node. 

In the sequel, we will also make use of the following differential 
operator: 

( ).,for:curl 21
2
1

1
2 vvx

v
x
v

=
∂
∂

−
∂
∂

= vv  

3. Error Estimators 

In order to solve the Navier-Stokes/Darcy coupled problem by efficient 
adaptive finite element methods, reliable and efficient a posteriori error 
analysis is important to provide appropriated indicators. In this section, 
we first define the local and global indicators and then the upper and 
lower error bounds are derived. 

3.1. Residual error estimator. The general philosophy of residual error 
estimators is to estimate an appropriate norm of the correct residual by 
terms that can be evaluated easier, and that involve the data at hand. To 
this end denote the exact element residuals by 

( ( )) ( ) ShShShShSTS p ,,,,, div2 uuuefR ∇⋅ρ−∇−µ+=  
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,indiv2 ,,
S
hShSh T T∈ρ− uu  

.in,,
1

,
D
hDhDhDTD Tp T∈∇−−= − uKfR  

As it is common, these exact residuals are replaced by some finite-
dimensional approximation called approximate element residual ,,T∗r  

{ }DS,∈∗  

[ ( )] .on2
,

∗
∗ ∈∈ hT TT TkPr  

This approximation is here achieved by projecting Sf  on the space of 

piecewise constant functions in SΩ  and piecewise 1P  functions in ,DΩ  

more precisely for all ,S
hT T∈  we take 

( ) ,1
, dxxT T
ST ff ∫=  

while for all ,D
hT T∈  we take DT ,f  as the unique element of [ ( )]21 TP  

such that 

( ) ( ) ( ) ( ) [ ( )] ., 21 Tdxxxdxxx
T

DT,
T

P∈∀⋅=⋅ ∫∫ qqfqf  

Finally, the global function hf  is defined by 

{ }.,,,in,, DSTT hTh ∈∗∈∀= ∗
∗∗ Tff  

Hence 

( ) ( ) ShShShShSTTS p ,,,,,, div2 uuuefr ∇⋅ρ−∇−µ+=  

[ ( ) ] ,indiv2 ,,
S
hShSh T T∈ρ− uu  

.in,,
1

,,
D
hDhDhDTTD Tp T∈∇−−= − uKfr  

Next introduce the gradient jump in normal direction by 
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[( ( ) ) ] ( )

( )





Ω∂∈

Ω∈⋅−µ
=

,if

,if2
:

,,
,

Sh

ShEEShSh
E

E

Ep
E

E

E

0

nIue
J n  

where I is the identity matrix of .22×R  

Definition 3.1 (Residual error estimator). The residual error estimator 
is globally defined by: 

,:

21

2
,

2
,
















Θ+Θ=Θ ∑∑

∈∈

TD
T

TS
T D

h
S
h TT

 (14) 

where the local error indicators ( )S
hTS T T∈Θ with2

,  and (with2
,TDΘ  

)D
hT T∈  are given by 

( ) ( )

2
,0,

2
,0,

2
, : EE

TE
TTSTS E

Sh

nJr ∑
Ω∈

+=Θ
EE ∩

 

( ) ( )
( ) 2

,0,,, 2 ESShSDhSh
TE

pp
h

nuen ⋅⋅µ−+−+ ∑
∑∈ EE ∩

 

( ) ( )
( )

2

,0
,, 2

E
ShSSh

d

TE h

ττ
ττ

⋅⋅µ+⋅
⋅⋅

µα
+ ∑

∑∈

uenu
κ

EE ∩

 

( )

2
,0,, EDDhSSh

E h

nunu ⋅+⋅+ ∑
∑∈E

 

,div 2
,0, TShu+  (15) 

and 

( ( )2
,0,

1
,

2
,0,

1
,,

22
, curl: TDhDhTDhDhDhTTD ph uKuK −− −+−∇−=Θ ff  

( ) ( )
[( ) ] 2

,0,,
1

, EEEDhDhDhE
TE

ph
Dh

τ⋅∇−−+ −

Ω∈
∑ uKf
EE ∩
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( ) ( )
( ) 2

,0,,
1

, EEDhDhDhE
TE

ph
Dh

τ⋅∇−−+ −

Ω∂∈
∑ uKf
EE ∩

 

( ) ( )

2
,0, EhDhE

TE
ph

h

λ−+ ∑
∑∈ EE ∩

 

.div 2
,0, TDhu+  (16) 

Furthermore denote the local and global approximation terms by 

( ( )







∈∀−+−

∈∀−
=ζ

,curl

,
:

,,0,,0,

,,0,

D
hTDhDTDhDT

S
hTShS

T
Th

T

T

T

ffff

ff
 

( ) ,: 2122
DS ζ+ζ=ζ  (17) 

where 

.:and:

21

2

21

2
















ζ=ζ
















ζ=ζ ∑∑

∈∈

T
T

DT
T

S
D
h

S
h TT

 (18) 

Remark 3.1. The residual character of each term on the right-hand 
sides of (15) and (16) is quite clear since if ( )( )hhh p λ,,u  would be the 

exact solution of (9), then they would vanish. 

3.2. Reliability of the a posteriori error estimator. Recall the 
notation for the velocity error ,huueu −=  the pressure error 

hp ppe −=   and the Lagrange multiplier .he λ−λ=λ  The a posteriori 

error estimator Θ  is consider reliable if it satisfies 

( ( )) .,, ζ+Θ×λ QHue eep   (19) 

In this subsection, we shall prove this estimate. But before, we remains 
some analytical tools. We introduce the Clément interpolation operator 

( ) ( ),: 11
∗∗

∗ Ω→Ω hh HHI  with 
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( ) { ( ) ( ) },,:: 101 ∗
∗∗ ∈∀∈Ω∈=Ω hTh TTvCvH TP  

approximates optimally non-smooth functions by continuous piecewise 
linear functions. In addition, we will make use of a vector valued version 

of ,∗hI  that is, ( ) ( ),: 11
∗∗

∗ Ω→Ω hh HHI  which is defined componentwise 

by .∗hI  The following lemma establishes the local approximation 

properties of ∗
hI  (and hence of ∗

hI ), for proof, see ([14], Section 3). 

Lemma 3.1 (Clément operator). For each { },, DS∈∗  there exist 

constants ,0, 21 >cc  independent of h, such that for all ( )∗Ω∈ 1Hv  there 

holds 

( ) ,,,11,0
∗

∆
∗ ∈∀≤−

∗ hTTTh TvhcvIv T  (20) 

and 

( ) ,,,,1
21

2,0 hhEEEh ETvhcvIv ET ∈∀∈∀≤− ∗
∆

∗
∗

 (21) 

where 

( ) { } ( ) { }.0::0:: /≠′∈′=∆/≠′∈′=∆ ∗
∗

∗
∗ TTTEandTTTT hh ∩∪∩∪ TT  

Proceeding analogously to ([12], Subsection 2.5) (see also [11]), we  
first let QHXQHXP ′×′=′→×= :::  and hhhhh XQHXP ′→×=::  

hh MH ′×′=:  be the nonlinear operator suggested by the left hand sides     

of (6) and (10) with the velocity solutions ( )SS S
Ω∈ Γ

1Hu  and 

( ),,, ShhS S Ω∈ ΓHu   that is, 

( )[ ] [( ( )) ( ) ] [ ( ) ] [ ( ) ],,,,,,:, 21 vaa DSDSS /+φ++= vvBuuBvuuVUP  

(22) 

for all (( ) (( ) ),,,,,, φ=/= DSDS v vvVuuU  where ( ) ( );,,, ξ=φλ=/ qpv   

and 
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[ ( ) ] [ ( ) ( )] [ ( ) ]hDhShDhShSh
h

hhh aa φ++= ,,,:, ,,,,,21 uuBuuuVUP  

[ ( ) ],,, ,, hDhSh v/+ vvB  (23) 

for all (( ) ) (( ) ).,,,,, ,,,, hDhShhhDhShh v φ=/= vvVuuU  Then, setting, 

( ) QHOF ′×′∈= ,:F  with 0≡O  on ,QH ×  it is clear from (9) and 

(12) that P and hP  satisfy 

[ ( ) ] [ ] ,,,, QHVVVUP ×∈∀= F   (24) 

and 

[ ( ) ] [ ] ,,,, hhhhhhh QHVVVUP ×∈∀= F   (25) 

respectively. In addition, we find, as explained in ([12], Subsection 5.2), 
that 1a  has hemi-continuous first order Gâteaux derivative LD →X:1a  

( )., XX ′  Is this way, the Gâteaux derivative of P at XW ∈  is obtained by 

replacing [ ( ) ]⋅⋅ ,1a  in (22) by ( ) ( )..,1 WaD  (see [12], Subsection 5.2 for 

details), that is, 

( ) ( ) ( ) ( ) [ ( ) ( ) ] [ ( ) ]va DSSa /++= ,,,,:, 21 vvBvuuvuwVUWP DD  

[ ( ) ],,, φ+ DS uuB  

for all (( ) ) (( ) ) .,,,,, QHvvVuuU ×∈φ=/= DSDS v  We deduce (see 

[12], Subsection 5.2) the existence of a positive constant ,PC  independent 

of W and the continuous and discrete solutions, such that the following 
global inf-sup condition holds: 

( )

( ) ( ) .,,sup QHWV
VUWPU

QHQHV
QHP ×∈∀≤

××∈
× ∗

DC  (26) 

We are now in position of establishing the following preliminary a 
posteriori error estimate. 

Theorem 3.1. The following estimation holds: 
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( ) ,~ ′×× <− QHQHUU Rh   (27) 

where R→× QH:R  is the residual functional given by ( ) [ −= F:VR  

( ) ],, VUP hh  for all ,QHV ×∈  which satisfies 

( ) .,0 hhhhR QHVV ×∈∀=   (28) 

Proof. The proof is similar to ([11], page 955, proof of Theorem 3.5). 
Further details are omitted.  

According to the upper bound (27) provided by the previous theorem, it 
only remains now to estimate ( ) .′×QHR  To this end, we first observe that 

the functional R can be decomposed as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),: 654321 vvvV RRqRqRRRR DSDS +ξ++++=   (29) 

for all ( )( ) ,,, QHvV ×∈ξ= q  with ( ) ( );,,, DSDS qqq == vvv  and 

where, 

( ) =:1 SR v  

( ( )) ( )
S

SShShShShShShS p 





 ρ−∇⋅ρ−∇−µ+ vuuuuuef ,div2div2 ,,,,,,  

([ ( )) ] )
SSSShShp Ω∂⋅µ−+ vnueI ,2 ,,  

( ) ∑⋅⋅⋅µ−+−+ SSSShSDhSh pp nvnuen ,2 ,,,  

( ) ,,2 ,,
∑

⋅⋅⋅µ+⋅
⋅⋅

µα
− τττ

ττ SShSSh
d vuenu
κ

 

( ) ( ) ,,: ,
1

,2 DDDhDhDD pR vuKfv −−∇−=  

( ) ( ) ,,: ,3 SShSS qqR u⋅∇=  

( ) ( ) ,,: ,4 DDhDD qqR u⋅∇=  

( ) ,,: ,,5 ∑ξ⋅+⋅−=ξ DDhSShR nunu  
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( ) .,: ,6 ∑⋅+⋅λ−= DDSShDhD pR nvnvv  

In this way, it follows that 

( ) { ( ) ( ) ( ) ( )′Ω′Ω′Ω′Ω′× +++≤
Γ DSDSS LL RRRRR 22 43,div21 HHQH  

( ) ( )}∑++ −
∑−

2/1
65 2/1 HRR H  (30) 

Hence, our next purpose is to derive suitable upper bounds for each one of 
the terms on the right hand side of (30). We start with the following 
lemma, which is a direct consequence of the Cauchy-Schwarz inequality 
and the trace inequality. 

Lemma 3.2. The following estimation holds: 

( )
( ) ( )














+ ∑∑

Ω∈∈

′ΩΓ
2

,0,
2

,0,1 EE
TE

TTS
T

E
ShS

h

SS
R nH Jr

EET ∩

  

( ) ( )

( ) 2
,0,,, 2 ESShSDhSh

TE

pp
h

nuen ⋅⋅µ−+−+ ∑
∑∈ EE ∩

 

( ) ( )
( )

21
2

,0
,, 2














⋅⋅µ+⋅

⋅⋅

µα
+ ∑

∑∈ E
ShSSh

d

TE h

ττ
ττ

uenu
κ

EE ∩

 

.Sζ+  

In addition, there holds 

( ) ,div

21

2
,0,3 2

















∑
∈

′Ω TSh
T

L
S
h

S
R u

T

  

( ) ,div

21

2
,0,4 2

















∑
∈

′Ω TDh
T

L
D
h

D
R u

T
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( )
( )

.

21
2

,0,,5 2/1












⋅+⋅∑
∑∈

∑− EDDhSSh
E

H
h

R nunu
E

  

Next, we derive the upper error bound for 2R  and .6R  We have the 

following lemma: 

Lemma 3.3. There holds: 

( ) (( ) )







−+−∇− −−

∈

′Ω ∑ 2
,0,

1
,

2
,0,

1
,,

2
;div2 curl TDhDhTDhDhDhT

T

phR
D
h

D
uKuKH ff

T

  

 

( ) ( )
[( ) ] 2

,0,,
1

, EEEDhDhDhE
TE

ph
Dh

τ⋅∇−−+ −

Ω∈
∑ uKf
EE ∩

 

( ) ( )
( )

21
2

,0,,
1

,






⋅∇−−+ −

Ω∂∈
∑ EEDhDhDhE

TE
ph

Dh

τuKf
EE ∩

 

,Dζ+  

 (31) 

and 

( )
( )

.

21
2

,0,6 2/1












λ−∑
∑∈

∑− EhDhE
E

H phR
hE

  (32) 

Proof. The estimate (32) follows directly from ([11], page 953, Lemma 
3.4). Our next goal is to derive the upper bound for ,2R  for which,        

given ( ),div DD Ω∈ Hv  we consider its Helmholtz decomposition 

provided in ([21], page 1882, Lemma 3.3). More precisely, there is    
0>DC  such that each ( )DD Ω∈ divHv  can be decomposed                    
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as ,curl DDD β+= wv  where ( )DD Ω∈ 1Hw  and ( )DD H Ω∈β 1  with 

,0=β∫Ω D
D

 and ( ) ( ) ( ).;div11
DDD DDH C ΩΩΩ ≤β+ HH vw  

Then, defining ( ) ( ) ( ),divcurl:, DhD
D
hD

D
hDh II Ω∈β+= Hwv  which 

can be seen as a discrete Helmholtz decomposition of ,, Dhv  and applying 

from (28) that ( ) ,0,2 =DhR v  we can write 

( ) ( ) ( ) ( ( )),curl ,2,2,22 DhDDhDDhDD RRRR β−β+−=−= wwvvv  

(33) 

with ( )D
D
hDh I ww =,  and ( ).curl, D

D
hDh I β=β  Note that ( ) .0curl , =∇ Dhp   

Thus, we have now by standard Green’s formula in two spatial dimensions 
on each T, the inequality: 

( ) {( )TDhDDhDhD
T

D pR
D
h

,,
1

,2 , wwuKfv −−∇− −

∈
∑
T

  

( ( ) )TDhDDhD ,,
1 ,curl β−β−− − uKf  

(( ) ) }., ,,
1

, TDhDDDhDhD p ∂
− β−β⋅−∇−+ τuKf  

We introduce the approximation Dh,f  of ,Df  and then the estimate (31) 

follows by applying Cauchy-Schwarz inequality and the Clément operator 
estimations of Lemma 3.1.  

We have now the main result of this subsection: 

Theorem 3.2. Assume that ( )SS Ω∈ 2Lf  and ( )DD Ω∈ 2Lf  satisfy 

the conditions of Theorems 2.1 and 2.2. Let ( )( ) QHu ×∈λ,, p  be the exact 

solution and ( )( ) hhhhh p QHu ×∈λ,,  be the finite element solution of 

coupled problem Navier-Stokes/Darcy. Then, the a posteriori error 
estimator Θ  satisfies (19). 
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Proof. Follows directly from Lemmas 3.2 and 3.3.  

3.3. Efficiency of the a posteriori error estimator. In order to derive 
the local lower bounds, we proceed similarly as in [9] and [10] (see also 
[20]), by applying inverse inequalities, and the localization technique 
based on simplex-bubble and face-bubble functions. To this end, we recall 
some notation and introduce further preliminary results. Given ,hT T∈  

and ( ),TE E∈  we let Tb  and Eb  be the usual simplex-bubble and face-

bubble functions, respectively (see (1.5) and (1.6) in [40]). In particular, Tb  

satisfies ( ) ( ) 0,upps,3 =⊆∈ TTT bTbTb P  sur ,T∂  and 10 ≤≤ Tb  on T. 

Similarly, ( ) ( ) { ∈′=ω⊆∈ TbTb EEE :upps,2P  ( )} 0,: =′∈ Eh bTE ET  

on ET \∂  and 10 ≤≤ Eb  in .Eω  We also recall from [39] that, given 

,N∈k  there exists an extension operator ( ) ( )TCECL →:  that satisfies 

( ) ( )TpL kP∈  and ( ) ( )., EpppL E
kP∈∀=  A corresponding vectorial 

version of L, that is, the componentwise application of L, is denoted by L. 
Additional properties of ,, ET bb  and L are collected in the following 

lemma (see [39]): 

Lemma 3.4. Given ,∗∈ Nk  there exist positive constants depending 

only on k  and shape-regularity of the triangulations (minimum angle 
condition), such that for each simplex T and ( )TE E∈  there hold 

( ),,,0,0
21

,0 Tqqqbq TTTT
kP∈∀  (34) 

( ) ( ),,,0
1

,0 Tqqhqb TTTT
kP∈∀∇ −  (35) 

( ),,,0,0
21

,0 Epppbp EEEE
kP∈∀  (36) 

( ) ( )( ) ( ).,,0
21

,0,0 EpphpLhpL EETET
kP∈∀∇+   (37) 

To prove local efficiency for ,: DS ΩΩ=Ω⊂ω ∑∪∪  let us denote by 
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( )( )
( )

( ) ( )
2

;div
22

,1
12

, :,,
DEE

Sh

DSE
E

wh qhq Ωωωω
−

Ωω∈

++=ξ ∑ ∩
∩

Hvvv
E

 

( )
,2

,21
2

2 ω∑Ωω
ξ++ ∩∩ DLDq  

where 

{ ( )}.:: TET S
hE ET ∈∈′=ω ∪  (38) 

Recall further the notation for the velocity error ,huueu −=  the 

pressure error hp ppe −=  and the Lagrange multiplier .he λ−λ=λ  The 

main result of this subsection can be stated as follows: 

Theorem 3.3. Assume that ( )SS Ω∈ 2Lf  and ( )DD Ω∈ 2Lf  satisfy 

the conditions of Theorem 2.1 and 2.2. Let ( )( ) QHu ×∈λ,, p  be the exact 

solution and ( )( ) hhhhh p QHu ×∈λ,,  be the finite element solution of 

coupled problem Navier-Stokes/Darcy. Then, the local error estimator TΘ  

satisfies: 

( ( )) ,,,,
~

~, hT
T

hpT Tee
T

T
T∈∀ζ+Θ ′

ω⊂′
ωλ ∑ue  (39) 

where Tω~  is a finite union of neighbouring elements of T. 

Proof. To establish the lower error bound (39), we will make extensive 
use of the original system of equations given by (1) to (5), which is 
recovered from the mixed formulation (6) by choosing suitable test 
functions and integrating by parts backwardly the corresponding 
equations. Thereby, we bound each term of the residual separately. 

(1) Element residual in .SΩ  Set [ ( )]21
0,: THbTTST ∈= rw  and 

consider 

( ) =TTTS wr ,,  
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( ( )) ( ) .div2div2 ,,,,,, TShShShShShShS
T

p wuuuuuef ⋅





 ρ−∇⋅ρ−∇−µ+∫  

Introduce Sf  and use the formulation (6) to get 

( ) ThSS
T

TTS
T

wffwr ⋅−=⋅ ∫∫ ,,  

( ( ) ) [( ) ] TSTSS
T

TS
T

p wwuuwue div:2 −⋅∇⋅ρ+∇µ+ ∫∫  

[ ( ( )) ( ) ] TShShShSh
T

p wuuue ⋅∇⋅ρ−∇−µ+ ∫ ,,,,div2  

.div2 ,, TShSh
T

wuu ⋅



ρ− ∫  

Integrating by parts we get 

( ) ( ) ( ) Tp
T

T
T

ThSS
T

TTS
T

eS wweewffwr u div:2,, ∫∫∫∫ −∇µ+⋅−=⋅  

( ) ( ) .div2 ,,,, TShShShShSS
T

wuuuuuu ⋅



 ∇⋅ρ−ρ−∇⋅ρ+ ∫  

Cauchy-Schwarz inequality implies that 

( ) TTTpTTTThSSTTS
T SS e ,0,0,1,0,0,, 2 wewffwr u ∇+µ+−⋅∫   

( ) ( ) .div2 ,,,, TShShShShSS
T

wuuuuuu ⋅



 ∇⋅ρ−ρ−∇⋅ρ+ ∫  

The inverse inequalities (34) and (35), the obvious relation TT ,0w  

TTs ,0,r  and the fact that 
SS Ω,1u  (see [17], Lemma 5 and Lemma 6) 

and 
ShS Ω,1,u  (see [17], Lemma 12) are both bounded lead to 

.,0
1

,0
1

,0,,0, TpTTTThSSTTS SS ehh −− +∇+− ueffr   

As ( ),,11 TEhh ET E∈∀≤ −−  then we deduce 
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( ( )) .,, ,,0, SwhpTTS T
ee ζ+λuer    (40) 

(2) Element residual in .DΩ  Set [ ( )] ,: 21
0, THbTTDT ∈= rw  we use 

(6) and integrate by parts to obtain: 

( ) TDhDhDh
T

TTD
T

p wuKfwr ⋅∇−−=⋅ −∫∫ ,,
1

,,  

( ) TDhDhDh
T

p wuKf ⋅∇−−= −∫ ,,
1

,  

( ) TDTDD
T

p wwfuK div1 −⋅−+ −∫  

( ) ( ).div1
, TpT

T
TDhD

T DD e wweKwff u +⋅+⋅−−= −∫∫  

As before Cauchy-Schwarz inequality and the inverse inequalities (34)-
(35) lead to, 

.,0,0
1

,0,,0, TpTTDhDTTTDT DD ehh ++− −
ueKffr   

Thereby, 

( ( )) .,, ,,0, DwhpTTDT T
eeh ζ+λuer    (41) 

(3) Curl element residual in .DΩ  For ,D
hT T∈  we set 

( )DhDhTC ,
1

,curl uKf −−=  and .TTT bCw =  Hence we notice that 

( )Twcurl  belongs to H and is divergence free, therefore by (6) we have 

( ( )) ( ( )) ,curl,curl, DTDTD ww fua =  

or equivalently, 

( ) ( ) .0curl1 =⋅−−∫ TDD
T

wfuK  (42) 

But by Green’s formula, we may write 
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( ) ( ) ( ),curlcurl ,
1

, TDhD
T

TDDh
T

TT
T

wwwC ⋅−+−= −∫∫∫ uKfff  

and by using (42), we deduce that 

( ) [ ( )] ( ).curlcurl ,
1

, TDhD
T

TDDh
T

TT
T

wwwC ⋅−+−= −∫∫∫ uuKff  

By Cauchy-Schwarz inequality, we obtain 

( ) .curlcurl ,0,0
1

,0,0, TTTTTTDDhTT
T

wwwC DueKff −+−≤∫  

Again the inverse inequalities (34)-(35) allows to get 

( ) ( ) ,curlcurl ,0,,0
1

,0,
1

, TDDhTTTDhDhT hh D ffeKuKf u −+− −−   

let 

( ) ( ( )) .,,curl ,,0,
1

, DwhpTDhDhT T
eeh ζ+− λ

−
ueuKf    (43) 

(4) Divergence element in { }.DS,, ∈∗Ω∗  We directly see that 

( ) { },,,divdiv ,, DShh ∈∀∗−=− ∗∗∗ uuu  

hence by Cauchy-Schwarz inequality, we conclude 

{ }.,,divdiv ,0,0, DSTTh ∈∗
∗∗ ueu    (44) 

(5) Normal jump in .SΩ  For each edge ( ),ShE Ω∈ E  we consider 

.21 TTwE ∪=  As [ ( )] ,20
, EEE P∈nJ  we set 

[ ( )] .: 21
0, EEEE wHbE ∈−= nJw  

First the weak formulation (6) yields 

( ) ( ) ( ) ,,,,
EwEEE p wfwbwua =+  

that is equivalent to 
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[ ( ) ] ( )ESS
w

ES
w

p
EE

weIuewf :2 −µ=⋅ ∫∫  

[ ( ) ] ESS
wE

wuu ⋅∇⋅ρ+ ∫  

[ ( )] .2 EESSp
E

wnueI ⋅µ−+ ∫ ω∂
 (45) 

By elementwise partial integration, we further have 

( ( ) ) ( )EShShEE
E

p
E

E weIuewJ n :2 ,,, −µ=⋅− ∫∫ ω
 

( ( ) ) .div2 ,,

2

1
EShSh

Ti
p

i
wue ⋅∇+µ−− ∫∑

=

 

Hence, by previous identity (45), we get 

[ ( ( ) )] EShShS
Ti

EE
E

p
i

E wuefwJ n ⋅∇+µ−−=⋅− ∫∑∫
=

,,

2

1
, div2  

[ ( ) ] ( )Ep
w SSh

E
e weIee u :2 , −µ− ∫  

[ ( ) ] .ESS
wE

wuu ⋅∇⋅ρ+ ∫  

We introduce the approximation hS,f  of ,Sf  use the Cauchy-Schwarz 

inequality, the inverse inequalities (36)-(37) and the fact that 
SS Ω,1u  

(see [17], Lemma 5 and Lemma 6) is bounded, to get 

( )












+−∑

=
iiiE TTSTShS

i
EEE h ,0,,0,

2

1

21
,0, rffJ n   

( ( ) ).,0,0
21

ESES wpwE eh +∇+ −
ue  

As ,1≤Eh  then by (40), we obtain 

( ( )) .,, ,,0, SwhpEE EE ee ζ+λun eJ    (46) 
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(6) Interface elements on .∑  To estimate the interface elements, 

we fix an edge E in ∑ and for a constant Er  fixed later on and a unit vector N, 

we consider ( )DESEE ,, , www =  such that: 

.Nw EEE br=   (47) 

The vector Ew  clearly, belongs to H. Hence the weak formulation (6) 

yields 

( ) ( ) ( ) ,,,,
EwEEE p wfwbwua =+  

that is equivalent to 

( ( ) ( ) ) ( )EDED
T

ESES
T

pp
SS

wwuKwweue divdiv:2 1 −⋅+−µ −∫∫  

( ) [ ( ) ] ( ) ,,, , E
E

EESS
wESES

d
ω=⋅∇⋅ρ+⋅⋅

⋅⋅

µα
+ ∫ wfwuuwu ττ

ττ κ
 

(48) 

where ST  (resp., DT ) is the unique triangle included in SΩ  (resp., DΩ ) 

having E as an edge. 

On the other hand, integrating by parts in ST  and DT  yields 

( ( ) ( ) )SEShSESh
T

p
S

,,,, div:2 wweue −µ∫  

( )DEDhDEDh
T

p
D

,,,,
1 div wwuK −⋅+ −∫  

( )ESESh
d ττ

ττ
⋅⋅

⋅⋅

µα
+ ,, , wu

κ
 

( ( ) ) SEShSh
T

p
S

,,,div2 wue ⋅∇−µ−= ∫  

( ) DEDhDEDh
T

p
D

,,,,
1 wwuK ⋅∇+⋅+ −∫  
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( )ESESh
d ττ

ττ
⋅⋅

⋅⋅

µα
+ ,, , wu

κ
 

([ ] [ ( ) ] ).2 ,,,, SEEShESEESh
E

p wnuenw ⋅µ−⋅− ∫  

Subtracting this identity to (48) we find 

([ ] ( ( ) ) ( )ESESh
d

SEEShEEEh
E

p ττ
ττ

⋅⋅
⋅⋅

µα
−⋅µ−⋅∫ ,,,, ,2 wuwnuenw

κ
 

( ( ) ( ) )SEpSE
T SS

S
e ,, div:2 wweee u −µ= ∫  

( )DEpDE
T DD

D
e ,,

1 div wweK u −⋅+ −∫  

( ) [ ( ) ] ESS
TEsE

d

S
S wuuweu ⋅∇⋅ρ−⋅⋅

⋅⋅

µα
+ ∫ττ

ττ ,,
κ

 

( ( ) ) SEShShS
T

p
S

,,,div2 wuef ⋅∇−µ+− ∫  

( ) DEDhDhD
T

p
D

,,,
1 wuKf ⋅∇−−− −∫  

In that last terms introducing the element residual { },,,, DST ∈∗∗r  we 

arrive at 

([ ] ( ( ) ) ( )ESESh
d

SEEShEEESh
E

p ττ
ττ

⋅⋅
⋅⋅

µα
−⋅µ−⋅∫ ,,,,, ,2 wuwnuenw

κ
 

( ( ) ( ) )SEpSE
T SS

S
e ,, div:2 wweee u −µ= ∫  

( )DEpDE
T DD

D
e ,,

1 div wweK u −⋅+ −∫  

( ) [ ( ) ] ESS
TESE

d

S
S wuuweu ⋅∇⋅ρ−⋅⋅

⋅⋅

µα
+ ∫ττ

ττ ,,
κ

  

( ) ( ) ... ,,,,,, DETDDhD
T

SETSShS
T DS

wrffwrff +−−+−− ∫∫    (49) 
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(a) To estimate the term  

( ) ( )
( ) ,2

2

,0
,,

E
ShSSh

d

TE h

ττ
ττ

⋅⋅µ+⋅
⋅⋅

µα∑
∑∈

uenu
κ

EE ∩

 

we take 

( ) τ.ττ
ττ

=⋅⋅µ+⋅
⋅⋅

µα
= Nuenu and2 ,, ShSSh

d
Er κ

 

With this choice, 0=⋅+⋅ DESE nwnw  on .∑  And thus, the identity 

(49) and the inverse inequality (36) yield, 

( ( ) ( ) )SEpSE
TEE SS

S
er ,,

2 div:2 wweee u −µ∫  

( )DEpDE
T DD

D
e ,,

1 div wweK u −⋅+ −∫  

( ) [ ( ) ] SESS
TESE

d

S
S ,,, wuuweu ⋅∇⋅ρ−⋅⋅

⋅⋅

µα
+ ∫ττ

ττ κ
 

( ) ( ) .,,,,,, DETDDhD
T

SETSShS
T DS

wrffwrff ⋅+−−⋅+−− ∫∫  

Hence Cauchy-Schwarz inequality, the inverse inequalities (37), the upper 
error bound of TT ,0,∗r  [i.e., estimates (40) and (41)], and the fact that 

SS Ω,1u  (see [17], Lemma 5 and Lemma 6) is bounded lead to 

( ) ( ( )) ,,,2 ,
,0

,, T
T

hp
E

ShSSh
d

E
E

ee ′
ω⊂′

ωλ ζ+⋅⋅µ+⋅
⋅⋅

µα ∑ueuenu ττ
ττ κ

 

(50) 

with .DSE TT ∪=ω  

(b) To estimate the term 

( ) ( )
( ) ,2 2

,0,,, ESShSDhSh
TE

pp
h

nuen ⋅⋅µ−+−∑
∑∈ EE ∩
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we take 

( ) .and2 ,,, SSShsShDhE ppr nNnuen =⋅⋅µ+−=  

As before the identity (49), the inverse inequalities (36) and (37), the 
upper bounds of { }DSTT ,,,0, ∈∗∗r  and of (46), and the fact that 

SS Ω,1u  (see [17], Lemma 5 and Lemma 6) is bounded lead to 

( ) ( ( )) .,,2 ,,0,,, T
T

hpESShSShDh
E

E
eepp ′

ω⊂′
ωλ ζ+⋅⋅µ+− ∑uenuen   

(51) 

(c) For ( ),∑∈ hE E  the term 
( )

2
,0, EhDhE

E
ph

h

λ−∑
∑∈E

 is bounded as 

follows: 

( ) ( )
( )2

,0,
2

,0
2

,0, EDhEhE
E

EhDhE
E

phph
hh

−λ+λ−λλ− ∑∑
∑∈∑∈ EE

  

( ( )) .,, 2
,

2
,21 Ehph eeh ωλ∑λ−λ ue  (52) 

(d) Analogously to ([4], Lemma 4.7), the term 

( )
EDDhSSh

E
,0,, nunu ⋅+⋅∑

∑∈E

 can be bounded by 

( ) 2
,0,

22
,0,

12
,0,, TShSTTShSTEDDhSSh SSS

hh uuuununu −∇+−⋅+⋅ −  

( ) ,div 2
,0,

22
,0, TDhDTTDhD DD

h uuuu −+−+  

where .DS TTE ∂∂= ∩  Now, as for each { } 1,, ≤∈∗
∗ThDS  and ,11 −− ≤ ET hh

S
 

then we have the estimate 

( ( )) .with,,, ,,0,, DSEhpEDDhSSh TTee
E

∪=ω⋅+⋅ ωλuenunu   

(53) 
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(7) Tangential jump in .DΩ  Finally, for ( ),DhE Ω∈ E  the terms 

( )
[( ) ] ,2

,0,,
1

, EEEDhDhDhE
E

ph
Dh

τ⋅∇−− −

Ω∈
∑ uKf
E

 

and 
( )

( ) ,2
,0,,

1
, EEDhDhDhE

E
ph

Dh

τ⋅∇−− −

Ω∂∈
∑ uKf
E

 respectively, are 

bounded analogously as in ([11], Lemma 3.16) by: 

[( ) ] 2
,0,

2
,0,,

1
, EwDhDEEEDhDhDhE ph uuuKf −⋅∇−− − τ  (54) 

( ( )) ,,, 2
, Ehp ee ωλue  

for all ( ),DhE Ω∈ E  where the set Ew  is given by 

{ ( )};:: TETw D
hE ′∈∈′= ET∪  

and 

( ) 2
,0,

2
,0,,

1
, ETDhDEEDhDhDhE ph uuuKf −⋅∇−− − τ  (55) 

( ( )) ,,, 2
, Ehp ee ωλue  

for all ( ),DhE Ω∂∈ E  with ,ET  the triangle of D
hT  having E as an edge. 

The estimates (40), (41), (43), (44), (46), (50), (51), (52), (53), (54), and (55) 
provide the desired local lower error bound of Theorem 3.3.  

4. Summary 

In this paper, we have discussed a posteriori error estimates for a 
finite element approximation of the Navier-Stokes/Darcy system. A 
residual type a posteriori error estimator is provided, that is both reliable 
and efficient. Many issues remain to be addressed in this area, let us 
mention other types of a posteriori error estimators or implementation 
and convergence analysis of adaptive finite element methods. Further, it 
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is well known that an internal layer appears at the interface ∑ as the 

permeability tensor degenerates, in that case anisotropic meshes have to 
be used in this layer (see for instance [15, 27]). Hence we intend to extend 
our results to such anisotropic meshes. 

Acknowledgements 

The first author thanks African Institute for Mathematical Sciences 
(AIMS South Africa) for hosting him for a two months research visit and 
Serge Nicaise (UVHC, FRANCE) for his collaboration. 

References 

 [1] T. Arbogast and D. Brunson, A computational method for approximating a Darcy-
Stokes system governing a vuggy porous medium, Comput. Geosci. 11(3) (2007),    
207-218. 

 [2] T. Arbogast and H. L. Lehr, Homogenization of a Darcy-Stokes system modeling 
vuggy porous media, Comput. Geosci. 10(3) (2006), 291-302. 

 [3] M. Arzanfudi, S. Saeid, R. Al-Khoury and L. J. Sluys, Multidomain-staggered coupling 
technique for Darcy-Navier/Stokes multiphase flow: An application to 2CO  
geosequestration, Finite Elem. Anal. Des. 121 (2016), 52-63. 

 [4] I. Babuška and G. Gatica, A residual-based a posteriori error estimator for the   
Stokes-Darcy coupled problem, SIAM J. Numer. Anal. 48 (2010), 498-523. 

 [5] I. Babuška and W. C. Rheinboldt, A posteriori error estimates for the finite element 
method, Int. J. Num. Meth. Eng. 12 (1978), 1597-1615. 

 [6] G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall,           
J. Fluid Mech. 30 (1967), 197-207. 

 [7] C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem, 
Mathematics of Computation 44 (1985), 71-79. 

 [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 
New York, 1991. 

 [9] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. 
of Computations 66 (1997), 465-476. 

 [10] C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in 
elasticity, Numer. Math. 81(2) (1998), 187-209. 

 [11] S. Caucao, G. N. Gatica and R. Oyarzùa, A posteriori error analysis of a fully-mixed 
formulation for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity, 
Comput. Methods Appl. Mech. Engrg. 315 (2016), 943-971. 



KOFFI WILFRID HOUEDANOU et al. 72

 [12] S. Caucao, G. N. Gatica, R. Oyarzùa and I. Šebestovà, A fully-mixed finite element 
method for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity,           
J. Numer. Math. (2015); http://dx.doi.org/10.1515/jnma-2015-0121 (in press). 

 [13] W. Chen and Y. Wang, A posteriori error estimate for H(div) conforming mixed finite 
element for the coupled Darcy-Stokes system, Journal of Computational and Applied 
Mathematics 255 (2014), 502-516. 

 [14] P. Clément, Approximation by finite element functions using local regularization, 
RAIRO Modélisation Mathématique et Analyse Numérique 9 (1975), 77-84. 

 [15] E. Creusé, G. Kunert and S. Nicaise, A posteriori error estimation for the Stokes 
problem: Anisotropic and isotropic discretizations, Math. Models Methods Appl. Sci. 
14 (2004), 1297-1341. 

 [16] M. Cui and N. Yan, A posteriori error estimate for the Stokes-Darcy system, Math. 
Meth. Appl. Sci. 34 (2011), 1050-1064. 

 [17] M. Discacciati and R. Oyarzua, A conforming mixed finite element method for the 
Navier-Stokes/Darcy coupled problem, Numerische Mathematik (2016). 

 [18] M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, 
and numerical approximation, Rev. Math. Comput. 22 (2009), 315-426. 

 [19] J. Faulkner, B. X. Hu, S. Kish and F. Hua, Laboratory analog and numerical study of 
groundwater flow and solute transport in karst aquifer with conduit and matrix 
domains, J. Contam. Hydrol. 110(1-2) (2009), 34-44. 

 [20] G. Gatica, A note on the efficiency of residual-based a-posteriori error estimators for 
some mixed finite element methods, Electron. Trans. Numer. Anal. 17 (2004), 218-233. 

 [21] G. Gatica, R. Oyarzùa and F.-J. Sayas, A residual-based a posteriori error estimator 
for a fully-mixed formulation of the Stokes-Darcy coupled problem, Comput. Methods 
Appl. Mech. Engrg. 200 (2011), 1877-1891. 

 [22] G. N. Gatica, S. Meddahi and R. Oyarzùa, A conforming mixed finite element method 
for the coupling of fluid flow with porous media flow, IMA J. Numer. Anal. 29 (2009), 
86-108. 

 [23] J. K. Guest and J. H. Prévost, Topology optimization of creeping fluid flows using a 
Darcy-Stokes finite element, Internat. J. Numer. Methods Engrg. 66(3) (2006), 461-484. 

 [24] M. Hadji, A. Assala and F. Nouri, A posteriori error analysis for Navier-Stokes 
equations coupled with Darcy problem, Calcolo (2014); 
http://dx.doi.org/10.1007/s10092-014-0130-z (in press). 

 [25] N. S. Hanspal, A. N. Waghode, V. Nassehi and R. J. Wakeman, Numerical analysis of 
coupled Stokes/Darcy flows in industrial filtrations, Transp. Porous Media 64(1) 
(2006), 73-101. 

 [26] K. W. Houedanou, Analyse d’erreur a-posteriori pour quelques méthodes déléments 
finis mixtes pour le probléme de transmission Stokes-Darcy: Discrétisations isotrope 
et anisotrope. Université d’Abomey-Calavi, thése de Doctorat, 2015. 
http://hal.archives-ouvertes.fr/tel-01373344 (210 pages). 



RESIDUAL-BASED A POSTERIORI ERROR ESTIMATES … 73

 [27] K. W. Houedanou and B. Ahounou, A posteriori error estimation for the Stokes-Darcy 
coupled problem on anisotropic discretization, Math. Meth. Appl. Sci. (2016); 
http://dx.doi.org/10.1002/mma.4261 (in press). 

 [28] W. Jäger and A. Mikelić, On the boundary conditions of the contact interface between 
a porous medium and a free fluid, Ann. Scuola Norm. Sup. Oisa Cl. Sci. 23 (1996), 
403-465. 

 [29] W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph and 
Saffman, SIAM Journal on Applied Mathematics 60 (2000), 1111-1127. 

 [30] W. Jäger, A. Mikelić and N. Neuss, Asymptotic analysis of the laminar visous flow 
over a porous bed, SIAM J. Sci. Comput. 22 (2001), 2006-2028. 

 [31] M. Moraiti, On the quasistatic approximation in the Stokes-Darcy model of 
groundwater-surface water flows, J. Math. Appl. 394(2) (2012), 796-808. 

 [32] V. Nassehi, Medelling of combined Navier-Stokes and Darcy flows in cross flow 
membrane filtration, Chem. Eng. Sci. 53(6) (1998), 1253-1265. 

 [33] S. Nicaise, B. Ahounou and W. Houedanou, A residual-based posteriori error 
estimates for a nonconforming finite element discretization of the Stokes-Darcy 
coupled problem: Isotropic discretization, Afr. Mat., African Mathematical Union and 
Springer-Verlag Berlin Heidelberg: New York 27(3) (2016), 701-729. 

 [34] L. Payne and B. Straughan, Analysis of the boundary condition at the interface 
between a viscous fluid and a porous medium and related modeling questions,            
J. Math. Pures Appl. 77 (1998), 317-354. 

 [35] C. Pozrikidis and D. A. Farrow, A model of fluid flow in solid tumors, Ann. Biomed. 
Eng. 31(2) (2003), 181-194. 

 [36] R. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic 
problems, in mathematical aspects of the finite element method lecture notes in math, 
Springer-Verlag, New York 50 (1977), 292-3150. 

 [37] P. Saffman, On the boundary condition at the interface of a porous medium, Stud. 
Appl. Math. 1 (1971), 93-101. 

 [38] M. Sugihara-Seki and B. Fu, Blood flow and permeability in microvessels, Fuid. Dyn. 
Res. 37(1-2) (2005), 82-132. 

 [39] R. Verfürth A posteriori error estimation and adaptive mesh-refinement techniques, 
J. Comput. Appl. Math. 50 (1994), 67-83. 

 [40] R. Verfürth, A Review of A posteriori Error Estimation and Adaptive Mesh-Refinement 
Techniques, Wiley-Teubner, Chrichester, UK, 1996. 

g 


