The frame set of a function g ∈ L 2 (R) is the subset of all parameters (a, b) ∈ R 2+ for which the time-frequency shifts of g along aZ × bZ form a Gabor frame for L 2 (R). In this paper, we investigate the frame set of a class of compactly supporte [...]
ATINDEHOU ABDOU GANIOU DÉBAYO [1], OKOUDJOU KASSO A. [3], KOUAGOU YEBENI B. [2],
In this work we develop an a posteriori error analysis of a non- conforming mixed finite element method for the coupling of fluid flow with a porous medium . The approach utilizes the same non- conforming Crouzeix-Rav.iart element discretization o [...]
In this paper, we develop an a posteriori error analysis for the stationary Stokes-Darcy coupled problem approximated by conforming the finite element method on isotropic meshes in R d , d ∈ f2, 3g. The approach utilizes a new robust stabilized full [...]
HOUEDANOU KOFFI WILFRID [1], ADETOLA JAMAL [2], ALLAOUI MOHAMED [3],
In this paper we develop a new a posteriori error analysis for the Monge-Ampère equation approximated by conforming finite element method on isotropic meshes in R 2 . The approach utilizes a slight variant of the mixed discretization proposed by Gé [...]
ADETOLA JAMAL [1], HOUEDANOU KOFFI WILFRID [2], AHOUNOU BERNARDIN [3],
We analyze a strongly coupled mixed formulation of the problem defining the inter- action between a free fluid and poroelastic structure. The free fluid is governed by the Stokes equations, while the flow in the poroelastic medium is modeled using [...]
This paper presents an a posteriori error analysis for a coupled continuum pipe- flow/Darcy model in Karst aquifers. We consider a unified anisotropic finite element discretization (i.e. elements with very large aspect ratio). Our analysis covers t [...]
We consider in this paper, a new a posteriori residual type error estimators for the Stokes-Darcy coupled problem analyzed in [1] on isotropic meshes. Our analysis covers two-and three-dimensional domains, conforming discretizations as well as dif [...]
This study deals with an optimal control problem subject to a stochas- tic elliptic equation with Dirichlet boundary condition and in which the state process is regular on a stochastic Hilbert space. We prove the ex- istence and uniqueness of the [...]
This paper provides a method for an optimal and equitable schedule of public load shedding on any time interval and any number of sectors. By combining dynamic programming and knapsack techniques, the method gives a schedule that iterates over part [...]