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ARTICLE INFO                                          ABSTRACT 
 

 
 

This article is devoted to modeling the mechanism of fouling in heat exchangers plates unsteady. The used 
simulation is based on the monitoring of the evolution of the ice at the changing phase (solidification) in water 
flowing in a rectangular section pipe, externally cooled. Cooling is done so that the heat exchange coefficient is 
uniform between coolant in a turbulent flow and the wall. The problem,  numerically solved by finite difference 
method, provided results that allowed the exploration of the effects of the most relevant parameters such as the 
coefficient overheated liquid, Biotand Reynolds numbers, the axial position, the cooling mode and temperature, 
the evolution of the ice layer simulating the deposit of dirt. 
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INTRODUCTION 
 
Widely used in various industrial sectors (chemical, food, petrochemical,etc.)., Heat exchangers during operation, end by losing the heat transfer 
efficiency, accompanied by an increase in pressure loss. These are two consequences attributable to fouling [1,3, 2]. The fouling, deposits on the 
heat exchange surface increases the thermal resistance to the transfer in time, due to several factors [3, 5, 2, 4]: scaling, corrosion, reactions 
between compounds in solution, the presence of macro and microorganisms, solids suspension or colloid, condensation of liquid particles or 
solidification in liquid phase. The importance of studies on fouling exchangers lies in the fact that this deposit produces exorbitant financial cost, 
due to the overhead caused by over-collateralization and especially downtime required for maintenance of the thermal units [3, 5, 8, 14, 2]. 
Modeling will predict the state ofclogging and to better sizing heat exchangers [7,9-14, 15,17, 20]. The deposition of substances is a function of 
time. It can therefore be modeled by performing a balance that involves the speed of growth of the deposit that characterizes its overcrowding and 
speed its elimination by retraining. The theory of germination [4] and its abundant use has a large step forward in the modeling of fouling [3, 5, 7, 
8, 10, 13, 14, 6, 15,17, 20]. The literature shows, however, that both methods, thermal and hydrodynamic are conventionally used in the study of 
the mechanism of fouling. The first method uses measurement of global exchange coefficient over time to estimate the thickness of fouling 
deposition [1, 2]. The second links the overall resistance to flow, depending on the weight or thickness of fouling deposit, to the loss charge [13, 
14]. The respective limits of previous approaches [15] led to the attempt of treating the problem by combining the two now taking into account 
both thermal and mechanical degradation, an approach known as entropy [2, 15, 17, 20].This article is devoted to the study by simulation, in 
plane geometry and in unsteady regime, the fouling of heat exchangers, followed by the growth of a layer of deposit ice. 
 
2.  EQUIPMENT AND METHODOLOGY  
 
2.1. Simulating device 
 
It was considered a line of flat rectangular section, ensuring the flow of water in which the phase change (solidification). It is cooled by a cooling 
fluid in turbulent flow, through the wall of a copper plate, so that the heat exchange coefficient between the fluid and the wall is uniform.  
The Figure 1 is a schematic representation of the problem where 0x is the pipe axis and 0ythe normal to 0x taken at half-height. Upstream of the 
pipe, the dynamic regime is supposedestablished and temperature profile is supposed to be uniform. 
 
2.2. Methodology and solving the problem in plane geometry 
 
We solve the heat equation in two-dimensional in each phase and then using the balance sheet and the condition at the interface, constants are 
determined finite volume or finite differences Methods are much more commonly used. We chose to resolve the problem by the method of finite 
differences on the one hand, and chose the formulation U-V-P other. This choice was guided by a quick calculation of the Peclet number, which 
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was very large (greater than 1000) for all simulations and allowed us to neglect the axial conduction in the energy equation for the liquid and 
solid phases [16, 18, 17]. Then, the ratio x/yp is large enough in the solid region, so it was the approximation that

 
≪ 1. Moreover, for all 

simulations, the Reynolds number of the working fluid is greater than 100, which authorizes the adoption of the Prandtl hypothesis. Given that 
the study applies to plate heat exchangers, it is convenient to adopt for the modeling, a two-dimensional Cartesian coordinate system (x, y) with x 
the axial coordinate and y is the normal coordinate. Thus, the following equations to be solved are expressed in dimensional quantities: 
 
Local continuity equation : 
 

+ ( . ) + ( . ) = 0                      (1) 
 
Projection of movement equation along 0X axis: 
 
휌 + 푢 + 푣 = − + 휇 +      (2) 
 
 Energy equation in the liquid: 
 

휌 퐶 + 푢 + 푣 = 휆 + + 2휇 + + 휇 +  (3) 
 
Energy equation in the solid: 
 
휌 퐶 = 휆 +        (4) 
 
Where u and v denote the axial and normal speed components, S is the source term from the viscous dissipation of energy.  
The main objective of the study was to determine the thickness of the deposit ice (fouling), we must add to these equations, the balance of the 
solid-liquid interface. 
 
Energy equation in the solid-liquid interface:  
 

휌 퐿 = 휆 − 휆 1 +       (5) 
 

The factor 1 + , introduced by the authors [3, 4], is the term that accounts for the curvature of the solid-liquid interface. It is important to 
recognize some simplifying assumptions that allow neglecting the effects of changes in certain variables. Thus, we took into account for the 
modeling, the following assumptions:  
 
 The fluid is incompressible;  
 The flow is laminar;  
 The dynamic regime is established and the temperature in the entry of the cooled zone is uniform. 
 Specific heat and thermal conductivity are considered constant. 
 Natural convection is negligible. 
 
Local continuity equation:  
 
The fluid is incompressible, we have 풅풊풗푽⃗ = ퟎand then:  
 

+ = 0                                                                                                                  (6) 
 
Equation of motion along 0x: 
 
휌 + 푢 + 푣 = − + 휇                                                                                    (7) 
 
Energy equation in the liquid: 
 

휌 퐶 + 푢 + 푣 = 휆 + 휇                                                                     (8) 
 
Energy equation in the solid:  
 
휌 퐶 = 휆                                                                                                       (9) 
 
Energy equation in the solid-liquid interface:  
 

휌 퐿 = 휆 − 휆 1 +                                                                                     (10) 
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Equation of conservation of the flow:  
 
∫ 푢. 푙.푑푦 = 푐푡푒for the zone without deposit                             (11-1)  
 

∫ 푢. 푙.푑푦 = 푐푡푒 for the area with deposit                             (11-2) 
  
The problem we are trying to solve is called "evolution."Thus we must add to these partial differential equations, boundary and initial conditions.  
 
Boundary conditions:  
 
At the entrance:  

푇 (푦,푥 = 0, 푡) = 푇  푣(푦, 푥 = 0, 푡) = 0,   푢(푦) = 푢 1−  

 
At the interface: 푢(푦 = 훿, 푥, 푡) = 푣(푦 = 훿, 푥, 푡) = 0 
The assumption of local thermodynamic equilibrium can also write: 푇 (푦 = 훿, 푥, 푡) = 푇 (푦 = 훿, 푥, 푡) = 푇  
 To the wall:푢 푦 = 푦 , 푥, 푡 = 푣 푦 = 푦 , 푥, 푡 = 0, for the area without ice  
 
휆 푦 = 푦 , 푥, 푡 = −ℎ∞ 푇 − 푇∞ , for the ice-free area  

휆 푦 = 푦 , 푥, 푡 = −ℎ∞ 푇 − 푇∞ , for the area with ice.  

On the x-axis: (푦 = 0, 푥, 푡) = (푦 = 0,푥, 푡) = 푣(푦 = 0, 푥, 푡) = 0 
 
2.3. Landau Transformation 
 
For the study area remains fixed in time and space, we applied the transformation of Landau [10] in the liquid and solid phases. It substitutes the 
normal variable η by two dimensionless variables 휂̅and ξ define in each area for liquid and solid phases, the following amounts: 
 
휂̅ = = 휉 =  0 ≤ 휂̅, 휉 ≤ 1 

 
Thus, the field of solving the problem in the normal direction is bounded by 0 and 1. This condition facilitates the solution of the Stefan problem. 
Derived using the transfer, changes in variables related to η can be expressed as follows [20]. 
In the liquid phase, we can write: 
 
휕
휕휂

=
1
훿̅

휕
휕휂̅

  ;   
휕
휕휂

=
1
훿̅

휕
휕휂̅

  ;   
휕
휕푋

=
휕
휕푋

−
휂̅
훿̅
푑훿̅

푑푋
휕
휕휂̅

 

 

휕
휕푋

=
휕
휕푋

−
2휂̅
훿̅
푑훿̅
푑푋

휕
휕휂̅휕푋

+
2휂̅
훿̅

푑훿̅
푑푋

−
휂̅
훿̅
푑 훿̅
푑푋

휕
휕휂̅

+
휂̅
훿̅

푑훿̅
푑푋

휕
휕휂̅

 

 
In the solid phase, we have: 
 
휕
휕휂 =

1
1 −훿̅

휕
휕휉   ;   

휕
휕휂 =

1

1− 훿̅
휕
휕휉   ;   

휕
휕푋 =

휕
휕푋 +

휉 − 1
1 − 훿̅

푑훿̅
푑푋

휕
휕휉 

 
휕
휕푋 =

휕
휕푋 +

2(휉 − 1)
1− 훿̅

푑훿̅
푑푋

휕
휕푋휕휉 +

2(휉 − 1)

1− 훿̅
푑훿̅
푑푋 +

휉 − 1
1− 훿̅

푑 훿̅
푑푋

휕
휕휉 +

휉 − 1
1− 훿̅

푑훿̅
푑푋

휕
휕휉  

 
Equations written in dimensionless form By making dimensionless these equations and configuring using Landau transformations, we obtain the 
system consisting of equations written below: 
 
Local continuity equation: 
 

− + = 0      (12) 
 

Equation of motion along 0x: 
 

+ 푉 − 푈휂̅ +푈 − = −      (13) 
 

Energy equation in the liquid phase: 
 

+푈 − + = +     (14) 
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 Energy equation in the solid phase: 
 

= . .
.

       (15) 

 
Energy equation in the solid-liquid interface:  
 

1− 훿̅ 훿̅ =
.

훿 − 1− 훿̅ 1 +                     (16) 
 
Conservation of flow equation: 
 
∫ 푈푑휂̅ = 1 for       푋 ≤ 푋                                                      (17-1) 

  
 

 ∫ 푈푑휂̅ = for푋 > 푋                                                      (17-2) 
 

It accesses the dimensionless numbers that are: 
 

 푅푒 = , Reynolds number characterizing the flow regime.  

 푃푟 = , Prandtl number, binding velocity and temperature. 

 푃푒 = 푅푒.푃푟 = , Peclet number, ratio of axial conduction convection. 

 퐵푟 = , number of Brinckman, taking into account the effects of viscous dissipation.  

 푆푡 , = , , Stefan number for the liquid and solid phases, respectively. 

 퐵푖 , = ∞.

,
, Biot number for the liquid and solid phases, respectively. 

 퐷 = 4푦 , hydraulic diameter and 푦  the channel half height. 
 

The boundary conditions become: 
 

At the entrance: 
 

휃 (휂̅,푋 = 0, 휏) = 휃 푉(휂̅,푋 = 0, 휏) = 0 푈(휂̅,푋 = 0,휏) = (1− 휂̅ ) 
At the interface: 푈(휂̅ = 1,푋,휏) = 푉(휂̅ = 1,푋,휏) = 0           푓표푟푋 > 푋  휃 (휂̅ = 1,푋, 휏) = 휃 (휉 = 0,푋, 휏) = 휃 푓표푟푋 > 푋  
At a wall: 푈(휂̅, = 1,푋, 휏) = 푉(휂̅ = 1,푋, 휏) = 0 
휕휃
휕휂̅

(휂̅ = 1,푋, 휏) = −퐵푖 휂̅ 휃 − 휃∞ 푓표푟푋 ≤ 푋  

휕휃
휕휉

(휉 = 1,푋, 휏) = −퐵푖 (1− 훿) 휃 − 휃∞       푓표푟푋 > 푋  

On the axis: (휂̅ = 0,푋, 휏) = (휂̅ = 0,푋, 휏) = 푉(휂̅ = 0,푋, 휏) = 0 
 
The first and second derivatives contained in the partial differential equations of (12) to (17-2) were then calculated by respectively:  
 
휕휙(푖, 푗)
휕휂̅ =

휙(푖, 푗 + 1) −휙(푖, 푗 − 1)
2Δ휂̅ + 푂(Δ휂̅)  

휕휙(푖, 푗)
휕푋 =

휙(푖, 푗)− 휙(푖 − 1, 푗)
Δ푋 + 푂(Δ푋) 

 
휕 휙(푖, 푗)
휕휂̅ =

휙(푖, 푗 + 1)− 2휙(푖, 푗) +휙(푖, 푗 − 1)
(Δ휂̅) + 푂(Δ휂̅)  

휕휙(푖, 푗)
휕휏 =

휙( , ) −휙( , )

Δ휏  

Discretization of the equations  
Equation-energy in the liquid phase: 
Equation (14) is in the form (18) and discretized as that of (19): 
 

푎 ( ) + 푎 (푗) + 푎 (푗) + 푎 (푗) = 푆(푗)                      (18) 
 

푎 (푗)
( , ) ( , )

Δ
+ 푎 (푗) ( , ) ( , )

Δ
+  푎 (푗) ( , ) ( , ) ( , )

(Δ )
+ 푎 (푗) ( , ) ( , )

Δ
= 푆(푗)       (19) 

 

where: 푎 (푗) =  1  ;         푎 (푗) = ( , )
( )

−푈 (푖 − 1, 푗)
( )

(푖 − 1) ; 
 

푎 (푗) = −
( )

 ; 푎 (푗) = 푈 (푖 − 1, 푗) 

푆(푗) =
2퐵푟

푃푒 훿̅ (푖 − 1)

푈 (푖 − 1, 푗)−푈 (푖 − 1, 푗 − 1)
2Δ휂̅  
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Rearranging the terms of the discretized equation of energy in the liquid, in ascending order of the indices j, we can rewrite it as (20): 
 
푎(푗).휃 (푖, 푗 − 1) + 푏(푗).휃 (푖, 푗) + 푐(푗).휃 (푖, 푗 + 1) = 푑(푗)                                     (20) 
 
where: 푎(푗) = ( )

∆
+ ( )

(Δ )
;           푏(푗) = ( )

Δ
− ( )

(Δ )
+ ( )

Δ
;        푐(푗) = ( )

∆
+ ( )

(Δ )
 

푑(푗) =
푎 (푗)

Δ휏 휃 (푖, 푗) +
푎 (푗)
Δ푋 휃 (푖 − 1, 푗) + 푆(푗) 
 

Thus, the vectors a (j) b (j) c (j) and (j) involve only the parameters of section i-1 are known at time t +1. 
Equation (20), put in the matrix form (20’), provides a tri –diagonal: 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
푏      푐          0         … … …       0

푎 푏 푐 ⋱⋱⋱⋮
0        ⋱⋱⋱⋱⋱⋮
⋮⋱⋱⋱⋱⋱⋮

⋮⋱⋱⋱⋱⋱         0
⋮⋱⋱⋱ 푎        푏 푐
0     ⋯⋯⋯          0푎 푏 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
휃 (푖, 1)

⋮
⋮

휃 (푖, 푗)
⋮
⋮

휃 (푖,푛푗)⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
푑(2)
⋮

푑(푗)
⋮
⋮

푑(푛푗)⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                              (20’) 

 
The elements b1, c1, an, bn of the tri-diagonal matrix are determined using boundary conditions on the axis and the wall. We used the Thomas 
algorithm for solving this system and thus obtained, the temperature profile in the liquid. The same procedure was adopted in the following on the 
matrix representation of the other equations. Different coefficients of the matrices were then determined from the boundary conditions on the 
system to which they belong. 
 
Energy equation in solid phase  
 
Equation (15) is of the form: 
 
푎 ( ) + 푎 (푗) = 0; 푎 (푗) = 1,푎 (푗) = .

. ( )
                               (21) 

 
Its discretization gave (22) rearranged as (23) or matrix form (23') 
 
푎  (푗)

( , ) ( , )
Δ

+ 푎 (푗) ( , ) ( , ) ( , )
(Δ )

= 0                               (22) 
 
 
푎(푗)휃 (푖, 푗 − 1) + 푏(푗)휃 (푖, 푗) + 푐(푗)휃 (푖, 푗 + 1) = 푑(푗)(23) 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
푏      푐          0         … … …       0

푎 푏 푐 ⋱⋱⋱⋮
0        ⋱⋱⋱⋱⋱⋮
⋮⋱⋱⋱⋱⋱⋮

⋮⋱⋱⋱⋱⋱         0
⋮⋱⋱⋱ 푎        푏 푐
0     ⋯⋯⋯          0푎 푏 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
휃 (푖, 1)

⋮
⋮

휃 (푖, 푗)
⋮
⋮

휃 (푖,푛푗)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
푑(2)
⋮

푑(푗)
⋮
⋮

푑(푛푗)⎦
⎥
⎥
⎥
⎥
⎥
⎤

                               (23’) 

 
It was determined, by identification, the vectors a(j), b(j), c(j) and d(j) respectively in sub- diagonal, diagonal, super-diagonal elements, and the 
result of the matrix product. 
 
푎(푗) = ( )

(Δ )
;  푏(푗) = ( )

Δ
− ( )

(Δ )
;  푐(푗) = ( )

(Δ )
;  푑(푗) = ( )

Δ
휃 (푖, 푗) 

 
Elements b1, c1, an, bn and are determined using boundary conditions at the interface and to the wall. The resolution of the tri-diagonal system 
gives the temperature profile in the solid. 
 
Motion equation  
 
At this stage of calculation, the temperature profiles in the liquid and the solid are known in every section i. We could therefore calculate the axial 
velocity profile. Equation (13) is then discretized in the following manner: 
 

푎 (푗)
푈 (푖, 푗)−푈 (푖, 푗)

∆휏 + 푎 (푗)
푈 (푖, 푗 + 1)− 푈 (푖, 푗 − 1)

2∆휂̅ + 푎 (푗)
푈 (푖, 푗+ 1) − 2푈 (푖, 푗) +푈 (푖, 푗 − 1)

(Δη) + 

 
푎 (푗) ( , ) ( ,

Δ
+ ( ) ( )

Δ
= 0(24) 

 
where:  푎 (푗) = 1    ;         푎 (푗) = ( , )

( )
− ( , ) ( )

( )
( ) 
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푎 (푗) = −
( )

;               푎 (푗) = 푈 (푖 − 1, 푗) 

 
Equation (24) rewritten as (25), has matrix representation (25’): 
 
푎(푗)푈 (푖, 푗 − 1) + 푏(푗)푈 (푖, 푗) + 푐(푗)푈 (푖, 푗 + 1) + ( )

Δ
= 푑(푗)(25) 

 
with: 푎(푗) = − ( )

Δ
+ ( )

(Δ )
 ; 푏(푗) = ( )

Δ
− ( )

(Δ )
+ ( )

Δ
 ; 푐(푗) = ( )

∆
+ ( )

(Δ )
  푑(푗) = ( ) ( , )

Δ
+ ( ) ( , )

Δ
+ ( )

Δ
 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
b c        0      … … …     0          0

a b c ⋱⋱⋱⋮    1 ΔX⁄
0       ⋱⋱⋱⋱⋮⋮⋮
⋮⋱⋱⋱⋱⋮⋮⋮

⋮⋱⋱⋱⋱⋱         0        ⋮
⋮⋱⋱⋱  a b c 1 ΔX⁄

0       ⋱⋱⋱        0       a b       0
1 2     … … … … …      0      0⁄ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

U(i, 1)
⋮
⋮

U(i, j)
⋮
⋮

U(i, nj)
P(i) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

   =    

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
푑(2)
⋮

푑(푗)
⋮
⋮

푑(푛푗)
푑(푛푗+ 1)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

                             (25’) 

 
Local Continuity Equation  
 
This is the equation of local continuity (12) which was used to calculate the normal component of the velocity V. The term 휕푉 휕휂̅⁄ is discretized 
by an upwind scheme in 휂̅direction: 
 

( , ) ( , )
∆

−
( )

( ) ( , ) ( , )
Δ

+
( )

( , ) ( , )
Δ

                   (26) 
 
Taking into account the second member, it gave the equation (27) written in the form: 
 
푎(푗)푉 (푖, 푗 − 1) + 푏(푗)푉 (푖, 푗) + 푐(푗)푉 (푖, 푗 + 1) = 푑(푗)  (27) 
 
with :  푎(푗) =

( )Δ
 ;                      푏(푗) =

( )Δ
 ;                      푐(푗) = 0 

 
푑(푗) =

푈 (푖, 푗)−푈 (푖 − 1, 푗)
Δ푋

+
휂̅

훿̅ (푖)
푑훿̅ (푖)
푑푋

푈 (푖, 푗 + 1) −푈 (푖, 푗 − 1)
2Δ휂̅

 

 
This is a diagonal matrix whose bi-matrix representation is (27'): 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
푏           0            0            … … …          0

푎 푏 ⋱⋱⋱⋱⋮
0            ⋱⋱⋱⋱⋱⋮

⋮⋱⋱⋱⋱⋱⋮
⋮⋱⋱⋱⋱⋱            0

⋮⋱⋱⋱ 푎 푏           0
0         … … …        0          푎 푏 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡

V(i, 1)
⋮
⋮

V(i, j)
⋮
⋮

V(i, nj)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
푑(2)
⋮

푑(푗)
⋮

푑(푛푗 − 1)
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                   (27’) 

 
Energy equationin solid - liquid interface 
  
Equation (16) is discretized as (28) and ordered: 
 

1− 훿̅ (푖) 훿̅ (푖) ( ) ( )
∆

=
.

훿̅ (푖) − 1− 훿̅ (푖)   
 

1− ( ) ( ). ( ) ( )
(Δ )       (28) 

 

It is then put into the form (29) of a third degree polynomial into훿̅ (푖): 
 

퐴. 훿̅ (푖) + 퐵. 훿̅ (푖) + 퐶 훿̅ (푖) + 퐷 = 0                                   (29) 
 
With: 퐴 = −

Δ
−

(Δ ) .
+    

 
 퐵 =

Δ
1 + 훿̅ (푖) +

(Δ )
2훿̅ (푖 − 1) + 1 + 2훿̅ (푖 − 1)  

 

 퐶 = − ( )
Δ

− . 1 + ( )
Δ

+ 1 + ( ). ( )
(Δ )

 퐷 =
.

. . 1 + ( )
Δ
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Calculating the thickness of the deposit The best approach is that calculating 훿̅ 푎푛푑 푑훿̅ 푑푋⁄ from the heat equation in the solid steady, then 
introduce them into the heat balance in the interface (equation 16) forcalculatingtransient휃 푎푛푑훿̅byNewton-Raphsoniterative method. Calculating 
approximate values of 휃 푒푡훿̅was then continued until the beginning of the formation of the deposit remains constant.  
The dimensionless energy equation in solid, in steady state, is: 
 

= 0                       (30) 
 

The boundary conditions below are added to the equation (30) for its analytical resolution: 
At the interface,  
we get : 휃 (휉 = 0,푋) = 휃 (휂̅ = 1,푋) = 휃 ; = (휂̅ = 1,푋) (휉 = 0,푋) 

 

At the wall,  
 

we have: = 1− 훿̅ 퐵푖 (휃 (휉 = 1,푋) −휃 ) 
 

The result of the analytical solution is such that 훿̅ =
∞

 

 

 

 
 

 
Figure 2. Flowchart of the algorithm for numerical computing in unsteady regime 
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There appears the expression of a gradient parietal whose values are very important for the calculation of the transfer of heat or pressure drop. 
Therefore, the choice of the polynomial approximation (29) must be judicious. The term commonly adopted is as follows: 
 

= ( , ) ( , )
Δ

                             (31) 
 

The results obtained with the expression (31) for calculating the temperature gradients at the wall and at the interface, are very strong. These are 
the source of a large velocity gradient. Itprefers for itself a third-degree polynomial, more accurate, given by (32): 
 

(휂̅ = 1,푋, 휏) = 푐 휙(푖,푛푗) + 푐 휙(푖,푛푗 − 1) + 푐 휙(푖,푛푗 − 2) + 푐 (푖,푛푗 − 3)                       (32) 
 
where : 푐 = 3  ;       푐 = −1 5⁄  ;     푐 = 1 3⁄  ;            푐 = −(푐 + 푐 + 푐 ). 
 
The flow chart describing the different steps of the algorithm calculations for the numerical solution is shown in Figure 2. 
 
3. RESULTS AND DISCUSSION 
 
Figure 3.1 (left) shows the results of analysis the overheating coefficient effects on the evolution of the solid - liquid interface relative to the 
selected position on the x axis. From  these results, it is clear that when the coefficient overheating  reduces, the appearance of ice deposit, so 
fouling occurs more rapidly, causing an enlargement of the area covered by fouling at the expense of naked without the ice. This has led to the 
search for limit position emergence of ice. It was then realized that the limit position is much smaller than the overheating coefficient is low still 
favoring development of the area covered.  
 

 
 

Figure  3.1 and 2. (3.1). Influences of overheating coefficienton the development of the solid-liquid interface as a function of the axial position,  
(3.2).  with the liquid Biot number 

 

 
 

Figure 4.  Effect of Reynolds number of the working fluid (for훆 = ퟎ,ퟒ 퐚퐧퐝 퐁퐢퐥 = ퟏ, ퟔퟔ)on the development of solid-liquid interface as a function of the 
axial position 

 
The results presented in Figure 3.2 (right) are those arising from the influence of Biot number analysis on the evolution of deposit ice at fixed 
value of the overheating coefficient. It gets in effect increasing the liquid Biot number also causes enlargement of ice area at the expense of 
naked.  Figure 4 presents results of analysis the effects of the Reynolds number or flow of the working fluid, on evolution of the ice according to 
the axial distance x. These results showed that the thickness of ice, simulating the thickness of dirt deposition, decreases as the Reynolds number 
or the flow rate increases at fixed Biot number and overheating coefficient values.  
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Figure 5. Effect of axial position on the evolution of the solid-liquid interface as a function of time (5.1-left): at 퐁퐢퐥 = ퟒ,ퟓퟖ ;  퐑퐞 = ퟓퟐퟎ ;  훆 = ퟎ, ퟐ , (5.1-left) 

and (5.2-right) : at퐁퐢퐥 = ퟒ, ퟓퟖ ;  퐑퐞 = ퟓퟐퟎ ;   훆 = ퟎ,ퟑ 
 

These Figures 5 show the results of the analysis  ofice deposits profiles over time, in different sections (X) of the chilled water pipe (legends).The 
results given by these curves have led to conclusion that the deposition thickness increases as the water approaches the exit of the pipe. These 
results are entirely consistent, because this is a heat exchanger against the current in which the cooling water increases from the inlet to the outlet 
of the pipe, the area where its temperature significantly lower, promotes solidification. It should be noted that given section, the rate of growth of 
ice is relatively high in the first moments, but eventually experience slowdown at long times (time greater than 75 seconds).  The results of the 
analysis of the effects of the axial position and the overheating coefficient in the temperature profile in the liquid and the plate are shown in 
Figure 6.  
 

 
 

Figure  6. Influences of axial position and overheating coefficient on the temperature profile in liquid at the pipe outlet (asymmetrical cooling). 
 
The results obtained here also are in no way inconsistent with those mentioned in various previous analyzes, as far as we are interested in those 
for temperature profiles based on both, the axial position, long times, the overheating coefficient, that the flow rate of the water. The examples 
shown in Figures 6 clearly show that the thermal boundary layer thickens up to the exit of the pipe area where the liquid is cold on one side and 
the temperature drop is higher in the first moments as long cooling time on the other. The curves obtained confirm that the higher the overheating 
coefficient is low, lower the temperature of plate. It is the same with the wall temperature when the Reynolds number of flowing water is low.  
 
Conclusion  
 
A model of plate heat exchanger fouling was described by the growth of ice based on a coupling of thermal degradation with the unsteady 
hydrodynamic. The simulation then allowed a better understanding of the influences of different parameters involved in the development and 
growth of the ice layer. It was thus possible to analyze the behavior of the thickness of the layer of ice (fouling deposit) as a function of the 
overheating coefficient, axial distance, and respective numbers of Biot liquid, Reynolds and finally time. Taking into account the experimental 
validation for the numerical model is the most perspective to this work. 
 
REFERENCES  
 
[1] Abu-Zaid M. (1992). A new technique for the measurement of fouling of heat transfer surfaces.Int. Comm. Heat Mass Transfer, Vol. 19, 

pp: 107-112.  
[2] Anjorin M. (1993) Etude de l’encrassement d’échangeurs de chaleur. Nouvelles propositions sur les critères d’encrassement. Thèse  de 

Doctorat Unique I.N.P. de Lorraine,  décembre 208p. 

170             International Journal of Current Research, Vol. 5, Issue, 02, pp. 162-171, February, 2013 
 



[3] Bohnet M. et al (April, 1992). Fouling mechanisms.Theoretical and practical aspects. Seminar n°23 Proceedings Ed. EuropThet Ind. 
Grenoble,  

[4] Clausse M. et al (1990). Germination phase.Entropy n° 153/154, pp: 33-39.  
[5] Critteden B.D., Alderman N.J. (1992). Mechanisms by which fouling can increase overall heat transfer coefficients. Heattransfer 

engineering vol. 13 n°4, pp: 32-40 
[6] Delaunay D. (1990). Transfert de chaleur par conduction associé à un changement de phase. 4e école d’été du G.U.T. Tome 1, Pont-à-

Mousson, Juillet. pp: 327- 372.  
[7] De Bonis M.V, RuoccoG (2009). Conjugate fluid flow and kinetics modeling for heat exchanger fouling simulation. Internat. Journal of 

Thermal Sciences 48, pp: 2006–2012. 
[8] Knudsen J. (1981). Fouling of heat transfer surfaces: an overview in power condenser. Heat Transfer Technology, Marto, P. and Nunn, R. 

eds. Hemisphere Publishing corp. Washington, pp: 375-423.  
[9] Lalof S,Palsson H. (2010).Detection of fouling in across-flow heat exchanger using a neuralnetwork based technique. International Journal 

of  Thermal Sciences. Vol. 49, no4, pp: 675-679. 
[10] Landau H. (1950). Heat conduction in a melting solid. Q. Appl. Math., Vol. 8, pp: 81- 94.  
[11] Gut J.A.W, Pinto M. (2004). Modeling of plate heat exchanger with generalized configurations.International Journal of Heat and Mass 

Transfer, 46.pp : 2571-2585. 
[12] Panya T., Phavanee N., Karn P. (2007). Dynamic  Simulation of Plate and Frame Heat Exchanger Undergoing Rapid Fouling. Proc. 

European Congress of Chem. Engineering (ECCE-6) Copenhagen, 16-20 Sept. pp: 1-16. 
[13] Ramasamy M., Shahid A., Zabiri H. (2008). Drift Analysis on Neural Network Model of Heat Exchanger Fouling. Journal of Engineering 

Sci. and Technology. Vol. 3(1), pp: 40-47. 
[14] Radhakrishnan, V.R, Ramasamy, M., Zabiri, H., Do Thanh, V., Tahir, N.M, Mukhtar, H., Hamdi, M.R &Ramli, N. (2007). Heat exchanger 

fouling model and preventive  maintenance scheduling tool. Applied Thermal Engineering.Vol.27, pp: 2791-2802.  
[15] René F., Lalande M. (1987). Echangeur de chaleur à plaques et joints. Résolution numérique des équations d’échange thermique entre les 

différents canaux. Revue Générale de Thermique, n° 311. pp: 577-583. 
[16] Sadeghipour M. S, Özisik M. N, Mulligan J. (1982). Transient Freezing of a liquid in a convectively cooled tube.Journal of Heat Transfer. 

Vol. 104, pp: 316-322.  
[17] Sadouk H.C (2009). Modélisation de l'encrassement en régime turbulent dans un échangeur de chaleur à plaques avec un revêtement 

fibreux sur les parois. Thèse de Dctorat Unique, Université Paris-Est. 191p. 
[18] Saito A., Okawa S., Kogabezawa S. (1991). Fundamental research on super cooling phenomenon on heat transfer surfaces: Investigation of 

freezing phenomenon of super cooled water droplet and its relationship with the effect of heat transfer surface. ASME/ J.S.M.E. Thermal 
Eng. Proc. Vol 3.pp: 319-326. 

[19] Schreier P.J.R, Pritchard A.M., Fryer P.J. (1994). Heat exchanger fouling by whey  protein solutions.  Fouling and Cleaning Food 
Processing Congress, Cambridge, G.B. 

[20] QuenumThe AC(1998).Study of fouling ofheat exchangersin plane geometrymodeling andexperimental simulationbyice.PhD 
thesisUniqueI.N.P.Lorraine, December.175p 

 

******* 

171             International Journal of Current Research, Vol. 5, Issue, 02, pp. 162-171, February, 2013 
 


