Abstract: The riser must be adequate to satisfy the liquid and solidification shrinkage requirements of the casting. In addition, the riser itself will be solidifying, so the total shrinkage requirement to be met will be for the riser/casting combination. The total feeding requirement will depend on the specific alloy, the amount of superheat, the casting geometry, and the molding medium. The shape of a casting will affect the size of the riser needed to meet its feed requirements for the obvious reason that the longer the casting takes to solidify, the longer the riser must maintain a reservoir of liquid metal. A variety of methods have been devised to calculate the riser size (shape factor method, geometric method, the modulus method) needed to ensure that liquid feed metal will be available for as long as the solidifying casting requires. In this research has been calculated the riser geometry by different methods for a piece type wheel and the simulation has been used to determine which of the methods it is more efficient.

Abstract: The purpose of this paper is to make an analysis of a system of piston mechanism and of its kinematic analysis on the one hand, and modeling and computer-aided design on the other hand. The paper uses kinematic analysis of a mechanism which is made in three methods – analytical, graphic and computer-aided which can also be successfully used in teaching engineers of technical sciences in higher education. Modern computer-aided methods are supported by a special software for analysis of treatment which can simulate not only movement of the mechanism, but it can also determine the position, velocity, acceleration, forces, moments and other parameters in every moment of time; however, control and application of mechanical laws are necessary. Some basic approaches, advantages and disadvantages of presented solutions are described.

Abstract: This research is initiated with the objective of investigating the behavior of light weight reinforced concrete columns under elevated temperature. Light weight concrete is achieved by using light weight expanded clay aggregate (LECA) as partial replacement (by volume) to normal weight aggregate. Four specimens were tested experimentally where they were subjected to elevated temperature, and under axial load. Experimentally tested specimens are used to verify a numerical model established by a commercial finite element modeling package ANSYS 13.0. Experimental measurements and numerical results showed a good agreement. Numerical model is then used to cover a wider range of concrete characteristic strengths and with different heating scenarios. Results showed that a slight reduction in the load carrying capacity, stiffness and toughness in unheated light weight columns when compared to the normal-weight concrete columns. Contrarily, an enhancement in the load carrying capacity after subjecting to elevated temperature is obtained.

Abstract: The geometric modeling of a folded composite membrane using method of approximation of a folded composite membrane by a developable surface with parabolic guidelines of any order is an aim of this work. This approach is carried out on a one-way expandable composite membrane with thermosetting polyester matrix reinforced by fiberglass. The geometric model is done in two steps: first one replaces the membrane of reference by a system of developable membranes from which then plane quadrilaterals arranged in a well-defined manner are constructed. This need the establishment of mono parametric equation of the family of the plans and the equation of the cuspidal edge of the developable surface basing on which it is carried out the development of algorithms for the construction of the folded composite membrane and that of the developed of the twisted membrane.

Abstract: The arsenic polluted sprinkling water might appear in the southern regions of Hungary. Arsenic levels sometimes exceed the 200 µg/l limit, allowed in underground water in Hungary. In the teamwork of Soil and Plant Testing Laboratory and the Institute of Vegetable Growing (Kecskemét College, Faculty of Horticulture) we studied some of the effects of sprinkling water containing arsenic pollution on different vegetables since 2006. In this work, lettuce in hydro-culture was used as an indicator plant. The aim of our examination was to clear up the effect of arsenic on the degree of arsenic accumulation. We used 25, 50, 75, 100, 200, 400 and 600 µg/l arsenic pollution doses.
DESIGNING OF A COMPOSITE FOLDED MEMBRANE BY A DEVELOPABLE MEMBRANE WITH PARABOLIC GUIDELINES OF ANY ORDER

1-3. Ecole Polytechnique d’Abomey-Calavi (EPAC), Department of Civil Engineering/University of Abomey-Calavi (UAC), Cotonou, BENIN

Abstract: The geometric modeling of a folded composite membrane using method of approximation of a folded composite membrane by a developable surface with parabolic guidelines of any order is an aim of this work. This approach is carried out on a one-way expandable composite membrane with thermosetting polyester matrix reinforced by fiberglass. The geometric model is done in two steps: first one replaces the membrane of reference by a system of developable membranes from which then plane quadrilaterals arranged in a well-defined manner are constructed. This need the establishment of mono parametric equation of the family of the plans and the equation of the cuspidal edge of the developable surface basing on which it is carried out the development of algorithms for the construction of the folded composite membrane and that of the developed of the twisted membrane.

Keywords: twisted membranes, folded composite membrane, developable surface

INTRODUCTION

The twisted membranes belong to the family of developable surfaces whose principal advantage as one knows it resides in their capacity to be spread on a plan without distortion lengths, tearing and crumpling. The applications of developable surfaces in industrial circle are varied. Indeed, the structures whose surface is developable are simply manufactured by folding of their developed form, cut out in a sheet of material. This process is used for example in shipbuilding for the manufacture of the hulls of boat [1]. In the field of the civil engineering and architecture, developable surfaces are generally regarded as a technical method for realization of complex forms. However, the study suggested in [2] show that they can be used like aesthetic tools with whole share.

The current evolution of technology brings to carry out increasingly complex projects, expensive and subjected to increasingly severe constraints of safety. The thin hull belongs to the family of structural surfaces which includes the membranes, folded surfaces and hulls. The hulls with simple or S curve are of everyday usage in structural engineering (engineering mechanical, civil, shipbuilding, aeronautical, etc). Vis-a-vis the geometrical complication of the majority of the structures membrane, the recourse to models more innovating, robust and fulfilling the requirements of reliable simulation as well as possible, proves to be paramount. The recourse to the material concrete to build 3D surfaces a little lost today with the profit of other materials the such composites. In addition, a complete modeling 3D with voluminal finite elements causes costs of prohibitory calculations as well as numerical problems of blockings for the mean structures.

An alternative resides in the development of a macroscopic model which consists in replacing a developable composite membrane by a system of plane quadrilateral elements i.e. a curved membrane by a folded surface. This approach is justified especially for developable surfaces bus by definition they are made of a mono parametric family of tangent plans on these surfaces according to the right generatrixes.

FORMULATION OF THE PROBLEM AND METHOD

In this work, one proposes a macroscopic model allowing the simulation of working of a composite
on a macroscopic scale by using a geometrical modeling much simpler than those of the literature like that proposed in [3]. This model is suggested based on a method of approximation of a composite folded membrane by a twisted surface with parabolic guidelines of any order.

MATHEMATICAL ASPECTS

The modeling of developable surfaces is a complicated problem, especially if one does not force the surface to be regular of class \(C^2\). Developable surfaces are isometric surfaces in the plane. The theorem of Minding states that two surfaces having even constant Gaussian curve are isometric. In this case, the theorem egregium indicates that the curve of Gauss of a developable surface is inevitably null in any point.

In general, it is more convenient to define a developable surface by a vector equation set of the shape:

\[\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k} \]

or by parameterized form:

\[x = x(u, v), \quad y = y(u, v), \quad z = z(u, v) \]

The expression (2) defines the direct parameterization and the expression (3) as a dual parameterization where not all the plans are parallel and the family of plans does not form a beam, that is, there is not a right common to all these plans.

Discretization: There is not discrete equivalent of the Gaussian curve, several expressions were proposed besides [4,5,6]. Consequently, there is not single solution to discretize a developable surface.

GEOMETRICAL MODEL SUGGESTED

Let us consider a twisted surface whose curved generatrices are plane parabolas of order \(m\) and \(n\):

\[x = 0, \quad y = 1, \quad y = a z^n \quad \text{and} \quad y = b z^m. \]

In this case, the parametric mono equation of the family of the plans will have the following form:

\[M = (n-1)(l-x)beta^m + nbeta^m(z-y-l) + \frac{l(y-bx^n)}{a} = 0 \]

Where \(\beta = z\), parameter of the parabola of the plan \(x=0\) and \(y=z\), parameter of the other parabola. The parameters \(\beta\) and \(\gamma\) are bound by the following relation [10]:

\[\gamma^m = \frac{an\beta^{n-1}}{bn} \]

By introducing the formula (6) into the equation (5) we will have:

\[M = M(x, y, z, \beta, \beta) = 0. \]

The right generatrix of the twist passes by the point \(\beta = z\) of parabola of order \(n\) and by the corresponding point \(\gamma = z\) of parabola of order \(m\). A twisted surface is completely given by its cuspidal edge whose definition is sufficient for the construction of its developed and that of the folded surface built starting from twisted surface [11].

For considered twisted surface, when \(m=n\), we obtain the equation of the cusp edge in the form:

\[z = 0, \quad y = 0, \quad x = \frac{l}{(1 - \frac{1}{\sqrt{a/b}})} \]

I.e. we have a cone if \(a \neq b\) or a cylinder if \(a=b\).

When \(m \neq n\), we obtain the equation of the cuspidal edge by the resolution of the following system:

\[M = 0, \quad \frac{\partial M}{\partial \beta} = 0, \quad \frac{\partial^2 M}{\partial \beta^2} = 0, \]

For example for \(m=2, n=4\) we find:

\[x = \frac{bl}{b - 6a \beta^2}, \quad y = -\frac{2a \beta^b}{b - 6a \beta^2}, \quad z = \frac{4a \beta^3}{b - 6a \beta^2} \]

Let’s assume that: \(a=0.5; b=1; l=5; m=2; n=4\). The formula (2) will take the following form:

\[M = (2 \beta^b - 3 \beta^4) x + 10 y - 20 \beta^2 z + 15 \beta^4 = 0, \]

and of the relation (6) we will have \(\gamma = \beta^3\).
RESULTS AND DISCUSSIONS
The twisted surface with parabolic guidelines of order \(m=2, n=4 \) and its corresponding cuspidal edge are shown in figure 1. From equation (7) one can determine the coordinates of the remarkable point for (not of return): \(\beta = 0, \; x = 1, \; y = z = 0; \; \text{for} \; \beta = \sqrt{b^6/a} \) there is a rupture of the cuspidal edge.

\[y = az^4 \]

Figure 1. Developable surface and its cuspidal edge

ALGORITHM OF CONSTRUCTION OF FOLDED SURFACE
The algorithm of construction of the folded surface on the basis of given twisted surface is studied in [12]. Let us build the developed of the folded surface (figure 2), tangent to the given twist according to the right generatrix when \(\beta = 0; \; \beta = 0.5; \; \beta = 1; \; \beta = 1.5 \).

We obtain the coordinates of the angular points of the folded surface as being the components of the points of intersection of three plans. Two plans will be given by two sides close to the folded surface which one can obtain by the mono parametric equation of the family of the plans (5) by fixing two parameters \(\beta \). The third plan will be that to which belongs the corresponding curved guideline of the twist, for example the plan \(x=0 \) or the plan \(x=l=5 \). So, we shall have:

\[M(\beta = 0) = 10y = 0, \]
\[M(\beta = 0.5) = -0.15625x + 0y - 2.5z + 0.9375 = 0, \]
\[x = 0, \]
\[A(x, \; y, \; z) = A(0; \; 0; \; 0.375), \]
\[M(\beta = 0.5) = -0.15625x + 0y - 2.5z + 0.9375 = 0, \]
\[x = 5, \]
\[A'(x, \; y, \; z) = A'(5; \; 0; \; 0.062), \]
\[M(\beta = 0.5) = -0.15625x + 0y - 2.5z + 0.9375 = 0, \]
\[M(\beta = 1) = -x + 10y - 20z + 15 = 0, \]
\[x = 0, \]
\[B(x, \; y, \; z) = B(0; \; 0.107; \; 0.8)\]
\[M(\beta = 0.5) = -0.15625x + 0y - 2.5z + 0.9375 = 0, \]
\[M(\beta = 1) = -x + 10y - 20z + 15 = 0, \]
\[x = 5, \]
\[B'(x, \; y, \; z) = B'(5; \; 0.12; \; 0.56)\]
\[M(\beta = 1) = x + 10y - 20z + 15 = 0, \]
\[M(\beta = 1.5) = 7.59x + 10y - 67.5z + 75.94 = 0, \]
\[x = 0 \]
\[C(x, \; y, \; z) = C(0; \; 1.04; \; 1.28)\]
\[M(\beta = 1) = 0; \; M(\beta = 1.5) = 0; \; x = 5, \]
\[C'(5;3.32; \; 2.18). \]

Figure 2. Folded surface obtained from the developable surface

In figure 2 one shows obtained folded surface. The side \(DD' \) is formed by the right generatrix of the twist when \(\beta = 1.5, \; \gamma = \beta^3 = 3.375 \), thus coordinates...
The coordinates of the point \(D' \) will be \(D'(5; 11.39; 3.375) \) and those of the point \(D \) will be \(D(0; 2.53; 1.5) \).

Having determined the coordinates of the angular points of folded surface, it is easy to calculate the linear and angular values necessary to construction of developed folded surface (figure 3).

Figure 3. Developed folded surface.

1-Developed of the twist; 2-Developed of the folded surface

ALGORITHM OF CONSTRUCTION OF DEVELOPED TWIST

Let us build considered developed twist by the method suggested in \([11]\). Knowing that the vectorial equation of a twisted surface is written in the following form:

\[
\vec{r}(u, \beta) = x\vec{i} + y\vec{j} + z\vec{k} + u \frac{x'\vec{i} + y'\vec{j} + z'\vec{k}}{\sqrt{x'^2 + y'^2 + z'^2}},
\]

with \(x = x(\beta), y = y(\beta), z = z(\beta) \) - parametric equation of the cuspidal edge (4) and \(u, \beta \) - curvilinear coordinates of the twist, \(|u| \) - the distance between the cuspidal edge and any point parallel to taken the tangent with the cuspidal edge, we obtain the equations of the guideline parabolas:

\[
\begin{align*}
 u_1 &= \frac{1}{b - 6a\beta^2} \sqrt{b^2 + (ab\beta^4 - 4a^2\beta^6) + (b\beta^2 - 2a\beta^4)^2},

 u_2 &= \frac{1}{b - 6a\beta^2} \sqrt{36a^2b^2\beta^4 + (6a^2\beta^6 - 24a^3\beta^8/b) + (6a\beta^8 - 12a^2\beta^{10}/b)^2},
\end{align*}
\]

where \(u_1 = u_1(\beta) \) - equation of the parabola of order \(n=4 \), \(u_2 = u_2(\beta) \) - equation of the parabola of order \(m=2 \).

The length of the right generatrix between the guideline parabolas is determined by the following formula:

\[
t = u_2 - u_1.
\]

The angle formed by the parabola and the right generator can be calculated by the following formula:

\[
\cos \alpha_i = \frac{F + u_i'}{\left| u_i'^2 + 2Fu_i' + B_i^2 \right|^{1/2}}, \quad \text{with } i=1,2.
\]

The lengths of the extreme curves between the corresponding right generators are determined by the formula:

\[
S_i = \int_{\beta} \sqrt{u_i'^2 + 2Bu_i' + B_i^2} \, d\beta, \quad \text{with } i=1,2.
\]

In the two last formulas expressions \(F = \vec{r}_u \cdot \vec{r}_\beta, B = \vec{r}_\beta \cdot \vec{r}_\beta \) \([11]\) are the coefficients of the first quadratic form of a surface. The subscripts of B indicate that these coefficients must be taken with \(u = u_i (i=1; 2) \).

Let us build developed twisted surface for which the mono parametric equation of the family of the plans is obtained in the form (8)). The values of \(t, \alpha_i,S_i \) will be given in the interval \(0 \leq \beta \leq 1.5 \) with spacing \(\Delta\beta = 0.3 \). It is easy to execute these calculations on computer. The results of calculations are reported to table 1.

Developed twisted surface is shown in figure 3. One can notice that for the determination lengths of the extreme curves between the corresponding right generatrixes, one uses the following formula of analytical geometry \([13]\):

\[
S = \int z \sqrt{1 + \left(\frac{dy}{dz} \right)^2} \, dz,
\]

For our case where \(n=4, m=2 \) (see formula (4)), it takes the form:

\[
S_1 = \int z \sqrt{1 + 16a^2z^6} \, dz, \quad z_1 = \beta, \quad (n = 4)
\]

\[
S_2 = \frac{z}{2} \sqrt{1 + 4b^2z^2} + \frac{1}{8b^2} \left[z + \frac{1}{2b} \sqrt{1 + 4b^2z^2} \right]_{z_2}^{z_1} \quad (m=2).
\]
The results obtained show that the method of approximation proposed as part of this work can be used to get a complete and relevant solution with a time of calculation on computer, by far much lower than the finite element method. Developable composite membranes’ modeling is a complicated problem and sometimes inextricable therefore that it does not impose on the surface to be of certain regularity. So, the possibility of the replacement of a developable composite surface by a folded surface lets you extend the fields of application of these membranes because with the increase in the number of edges (boundaries), one could get a folded structure identical to the expandable membrane of reference. This offers new perspectives to the design of a new variety of folded composite structures.

The theory concerning working of the composite structures with developable form was the subject of a number of studies for example in [14]. In a general way, concerning the composites, for the production of developable forms one often uses thermo-hardening resins whose reinforcements are presented in the form of continuous chechmates i.e. distributed tablecloths in a one-way way. Indeed, the composite membrane object of our study is reinforced resin polyester with one-way fiberglass bus today, only the macroscopic approaches make it possible to simulate working of the composite membranes of this class. The lower scale models make it possible as for them studied the behavior of a reinforcement starting from the assembly of its elementary components. However, the macroscopic scale considers the reinforcement as a continuous material whose behavior is closely related to its internal structure but this one does not appear in an explicit way in modeling. The majority of the digital simulations on this scale use a continue approach [15, 16].

CONCLUSIONS

In this work we can retain the following:

- It’s proceeded to the study of developable composite membrane with parabolic guidelines as two plan parables of order m and n: x=0, y=az^n and x=l, y=bz^m. This developable membrane, it is established the mono parametric equation of family plans and the equation of the cuspidal edge. The cuspidal edge of the developable surface with parabolic guidelines of order n=4, m=2 presents a singular point (x=l, y=z=0).

When $z = \sqrt[6a]{b}$, it has a break from the cuspidal edge.

- It is built the developed of the folded membrane tangent to the developable membrane following four straight generatrixes (figure 2; figure 3). A method for the construction of the developed of the twisted membrane is developed. Through this approach, we see that with the increase in the number of edges of the folded surface, the dimensions of its developed approximately are very close to those of the corresponding developable membrane. This offers a considerable interest of practical application for the formatting of folded composite membranes.

REFERENCES

