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ABSTRACT

We investigated the effect of different combinations of (p) continuous to (q) categorical
variables and increasing group centroid separation function (6 = 1,2, 3) on the performance
of the Location model for two groups (11;,i = 1,2). The number of predictor variables were
4 and 8 with 1:3, 1:1 and 3:1 being the predetermined ratios for p : q. We generated
N(p1,I) of sizes 40, 80 and 120 with MatLab R2007b for p variables within 2¢ binary cells
inTI,. The size of TI, was determined using sample ratios 1:1, 1:2, 1:3 and 1:4 for ny : n»
within 22 cells. Group1 has mean pﬁl) = 0 in the first cell (for p continuous variables)
and uél) = §, subsequent cells, ugm“) = uﬁm) + 1. Error rates reduced more rapidly for
increase in 0 than asymptotically. The optimal p : ¢ was 3:1 and the model deteriorated
at 1:3 with larger variability. The 8 variable model performed better than the 4 variable
model for large sample sizes of p : ¢ = 1 : 1 and outperformed it for all sample sizes of
p:q = 3 : 1. Results showed that to use the Location model for classification problems
with equal (or more) categorical to continuous variables, it should be compensated with
increased distance function and sample sizes.

Keywords: Location model, classification, categorical to continuous variables, contingency
table, leave-one-out method
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1 Introduction

Traditionally, discriminant analysis is used for differentiating groups (categorical dependent
variables) which are known a priori while the independent variables are quantitative and nor-
mally distributed. When the independent variables used in discriminant analysis constitute both
qualitative (discrete) and quantitative (continuous), a familiar technique is the application of the
location model, which was first proposed by Olkin and Tate (1961). The model assumes that
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the conditional distribution of the continuous variables given the discrete variables are multi-
variate normally distributed with constant covariance matrix across all locations determined by
the discrete variables (McLachlan, 1992). Chang and Afifi (1974) extended the concept of the
location model to two-group situations deriving a Bayes classification procedure for classifying
an observation consisting of both dichotomous and continuous variables. A generalization of
their results has been considered by Krzanowski (1975), in which optimum and estimated allo-
cation rules were derived for mixed binary and continuous variables using likelihood ratio. He
later looked at the location model for mixtures of all types of variables (Krzanowski, 1980), and
when there exists more than two differentiating groups for more general discrete and continu-
ous mixtures (Krzanowski, 1986).

In many multivariate situations the statistician is presented with data on a very large num-
ber of independent variables, and the question arises whether they are all necessary and if
not which can be discarded. In discriminant analysis the problem is to choose a subset of
the available variables without seriously impairing the discriminating power of the set. Mur-
ray (1977) in a simulated study presented three different procedures used in selecting sub-
sets of available variables. Selection of variables for mixtures of continuous and discrete
variables, with reference to the location model, has also been looked at in literature (e.g.
Krzanowski, 1983; Gutiérrez, Merbouha, Gutiérrez-Sanchez and Nafidi, 2008; Hamid, 2010).

In using the location model for discriminatory problems, one has to limit the number of discrete
variables, otherwise the number of parameters to be estimated will be excessive. Krzanowski
(1983) suggested an upper limit of six binary variables if the sizes of the initial samples avail-
able from each group are not large, with corresponding reduction in number when some vari-
ables have more than two states. If the sizes of the initial samples are large, the computa-
tional effort needed to estimate error rates was found to increase disproportionately with the
number of discrete variables, which becomes a problem. Krzanowski (1983) therefore pro-
posed a backward elimination method of discrete variable selection which can be used to
identify a suitable, reduced location model for discriminant applications when the number of
discrete variables are too large for direct use. In another instance, some authors proposed a
combination of both non-parametric smoothing and regularization to address the problem of
over-parameterisation and instability of the covariance matrix in the location model (Gutiérrez
et al., 2008). More recently, Hamid (2010) proposed an idea that integrates a dimensionality
reduction technique via principal component analysis and a discriminant function based on the
location model. The aim is to offer another technique of classification when the observed vari-
ables are mixed and too large.

Undoubtedly, in order to reduce the number of parameters estimated and to overcome the
problem of instability or singularity in the location model, reducing the number of discrete vari-
ables in the location model and the number of variables in discriminant analysis as a whole has
been the concern of researchers for some time now. Since the estimation of parameters in the
location model is based on the number of multinomial cells created by the discrete variables
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and the continuous variables as well, we looked at the problem in which the number of binary
variables is a scalar multiple of the continuous variables. The aim was to find a continuous-
binary variable ratio combination which will give minimum error rates of misclassification in the
location model for the two group case.

2 The Location Model and Estimation of its Error Rates

Let v denote a random vector of observations made on any individual which is a mixture of
q binary variables x and p continuous variables y. The contingency table formed from x has
s = 27 locations or cells; and denote these locations by z1, 2, ..., zs. Then the location model
(LM) as proposed by Olkin and Tate (1961) assumes that the conditional distribution of y given
that x falls in location z,, is N, (1™, %) and the marginal distribution of the locations is given
by P(z = zm) = pm, With >0 pyy = 1.

From the normality assumption of the model, the conditional probability density of y, given that
the binary variables locate the individual in cell m, is

1 (m)y\r (m)
- ——(y — u; 3
s exp{=5(y —m")Z y = ")}

in T1;, (¢ = 1,2). Thus the joint probability density of obtaining the individual cell m and observ-
ing the continuous variable values y is

DPim 1 (m)\r (m)
S L ——— S RCON
s xp{ S =) Yy — ™)}

inTI;, (< = 1,2). Hence we deduce that the Bayes allocation rule for an observation v/ = (y’, x’)
is: allocate to II; if

(i — ™ ys"Hy ~

and otherwise to Ils. (Krzanowski, 1975)

1 m m
5(//& ) +,Ué ))} > ln(pZm/plm); (21)

In practice, the parameter values are unknown and the usual procedure is to replace the opti-
mum classification rule (2.1) by a sample-based allocation rule from given training sample. The
classical approach of using a sample-based allocation rule is to use the allocation rule (2.1)
but to replace the parameters by their unbiased maximum likelihood estimates. Let ny,, and
nam denote the number of observations falling in cell m of the multinomial cells from II; and
II, and let y Z” denote the vector of continuous variables associated with the jth observation

in cell m of the sample from II;. Then the unbiased maximum likelihood estimates are:

L Mim a(m) _ _(m) _ 1 (m)
Pim =il =¥ = ji
n; nzmj:1

and
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i=1 m=1 j=1
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(Krzanowski, 1975).

Once an allocation rule has been derived, it is important to have a reliable method for esti-
mating the error rates that it gives rise to, in order to assess its performance relative to other
classification rules since parameters are rarely known (McLachlan, 1992). A non-parametric
method which is known to work better than most other estimative procedures is the leave-
one-out method of Lachenbruch and Mickey (1968). This method is also adopted in this pa-
per because of its relatively good performance compared with other error rate estimators (
Glele Kakai and Palm, 2004; Kakai and Palm, 2009) and also because it is available in most
of the statistical software. The error rate from each group is estimated as the proportion of
observations misclassified from each sample.

3 Simulation Design and Efficiency Criteria

Data were simulated for two groups, II; and I, with MatLab R2007b. We generated N (i1, 1)
where I (an identity matrix) denotes the common covariance matrix across the groups and
cells, of sizes 40, 80 and 120 for p variables within 2¢ binary cells in 1I;. The size of 11, is
determined using sample ratios 1:1, 1:2, 1:3 and 1:4 for ny : ny within 29 cells. Group1 has
mean ,4” = 0 in the first cell (for p continuous variables) and ugl) =6 (where § = 1,2,3 is the
group centroid separator), subsequent cells, p§m+1) = pgm) + 1, in this case we have restricted
the mean of each continuous variable to be a positive integer. The number of predictor vari-
ables are 4 and 8 with 1:3, 1:1 and 3:1 being the predetermined ratios for p : q. The following
was also considered during the data simulations: we let p;,, = p;; for m # j locations, which
implies the probability of locating an observation in, say, the mth cell is p,,, = 1/29, a constant.
That is, the total number of observations across the locations are the same with n;,, = n;;
for m # j. Then p;, = p;, the estimated prior probability of IT;, ( = 1,2). In order to over-
come the problem of singularity of the covariance matrices within locations, we ensured that
N1im + nem — 2 > p for the mth cell (Johnson and Wichern, 2007, pp. 591).

For each combination of factors considered, thirty samples of different sizes given above were
generated and the leave-one-out error rate estimator was used in estimating the error rates in
each case . The average error rates of classification together with their standard deviations
and coefficients of variation (variations in short) were computed for the thirty replications.

4 Results

4.1 Presentation of the Results

Results of the misclassification rates obtained from the simulations is presented in Table 1
and also pictorially using comparative box plots in Figures 1 to 3, for all factor combinations.
The Table is displayed as follows. The first column is the total number of mixed continuous
and binary predictor variables p + ¢; the second column of the table is the total sample size
n1 + no used in the simulations predetermined by the sample ratios n; : ne =1 :1,1:2,1:
3,1 : 4; the next three major columns are the misclassification rates obtained for the centroid
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separators 6 = 1,2,3. The results for the different ¢'s is made up of three subcolumns each.
The subcolumns are the misclassification rates for the continuous-binary ratio combinations
p:q=1:3,1:1,3:1. Foreach p+ g = 4 and 8 number of predictor variables, results are
displayed for the different sample sizes of group1 (n; = 40, 80, 120). In order to avoid singularity
of covariance matrices across locations, simulations were not carried out for continuous-binary
ratio 1 : 3 for p+ ¢ =8and forny : ny = 1: 1 when n; = 40 for the same p + q.

4.2 Error Rate of Misclassification of the Location Model According to the Fac-
tors Considered

Table 1: Mean error rates of misclassification of the location model for the different factor combinations

6=1 6=2 6=3

nvard | S/Size® Var. Ratio® Var. Ratio Var. Ratio
18 [ 14 ] 8d 13 [ 14 ] 8 13 [ 14 ] 8
1 = 40
80 0.1754 0.1394 0.1029 0.0867 0.0490 0.0256 0.0346 0.0125 0.0031

120 0.1515 | 0.1211 0.0931 0.0761 0.0368 | 0.0201 0.0335 | 0.0100 | 0.0026
160 0.1191 0.0991 0.0766 0.0651 0.0373 | 0.0200 0.0295 | 0.0101 0.0019
200 0.0974 | 0.0795 | 0.0689 0.0593 | 0.0299 | 0.0181 0.0302 | 0.0073 | 0.0019

ni = 80
160 0.1537 | 0.1215 | 0.1030 0.0776 | 0.0457 | 0.0250 0.0333 | 0.0098 | 0.0034
4 240 0.1410 | 0.1118 | 0.0917 0.0746 | 0.0399 | 0.0203 0.0313 | 0.0081 0.0023

320 0.1145 | 0.0928 | 0.0788 || 0.0667 | 0.0337 | 0.0171 0.0278 | 0.0081 | 0.0028
400 0.0944 | 0.0822 | 0.0684 || 0.0577 | 0.0303 | 0.0163 || 0.0263 | 0.0073 | 0.0020
ny = 120
240 0.1587 | 0.1265 | 0.0982 || 0.0810 | 0.0407 | 0.0227 |[ 0.0372 | 0.0099 | 0.0019
360 0.1357 | 0.1110 | 0.0908 || 0.0736 | 0.0390 | 0.0208 || 0.0314 | 0.0082 | 0.0016
480 0.1121 | 0.0967 | 0.0793 || 0.0653 | 0.0347 | 0.0175 || 0.0290 | 0.0070 | 0.0017
600 0.0954 | 0.0799 | 0.0664 || 0.0586 | 0.0301 | 0.0153 || 0.0258 | 0.0072 | 0.0016

ny = 40
120 - 0.1650 | 0.0736 - 0.0714 | 0.0068 - 0.0321 0.0004
160 - 0.1157 | 0.0623 - 0.0389 | 0.0058 - 0.0090 | 0.0001
200 - 0.1005 | 0.0558 - 0.0316 | 0.0052 - 0.0059 | 0.0000
ny = 80
160 - 0.1355 | 0.0670 - 0.0483 | 0.0059 - 0.0143 | 0.0005
8 240 - 0.1044 | 0.0610 - 0.0266 | 0.0039 - 0.0041 0.0001
320 - 0.0911 0.0511 - 0.0209 | 0.0047 - 0.0023 | 0.0001
400 - 0.0744 | 0.0463 - 0.0166 | 0.0039 - 0.0015 | 0.0000
ny = 120
240 - 0.1104 | 0.0641 - 0.0246 | 0.0058 - 0.0044 | 0.0000
360 - 0.0933 | 0.0595 - 0.0197 | 0.0043 - 0.0019 | 0.0000
480 - 0.0767 | 0.0498 - 0.0148 | 0.0039 - 0.0014 | 0.0001
600 - - 0.0135 | 0.0033 - 0.0015 | 0.0000

2 Total Number of Variables
b Total Sample Size
¢ Continuous-Binary Variable Ratio

The table above shows that as ¢ increases from 1 to 3, the mean error rates decrease for all
variables and continuous-binary variable ratio combinations for each total sample size. The
following pattern is also evident in general. As the total sample size increases, the error rates
decrease appreciably for all factor combinations, the error rates were found to be smaller for the
8 variable models than the 4. There was also decrease in error rates we move the continuous-
binary variable ratios from 1 : 3 through 3 : 1.

The graphical display of results are presented as pairs of figures. In each pair, the graph for
the mean error rates is on the left with that of the variations on the right. Each pair represents
a matrix of comparative boxplots for the different centroid separators (d’s) considered. Also,
each graph (either for mean error rates or variations) comprises of a 1 x 3 matrix plots, each
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column showing results for the different sizes of group1, n; predefined. For each ny, the plots
show results for the number of variables considered (nvar = 4, 8) and the continuous-binary
variable ratios (var ratio=1:1,1:3,3:1).

4.3 Stability of the Performance of the Location Model According to the Factors

Considered
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Figure 1: Box plots of mean error rates of classification and coefficients of variation for § = 1
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Figure 2: Box plots of mean error rates of classification and coefficients of variation for § = 2

Baosplot of mean error rate for LM Bosplot of O for LM
ke =] il =
Wi = 40 M= B0 NI = 120 [TEX ] Tl = B0 Ni= 120
L1 4
, of g g i - H
g H
5
E L « 2
i s
L] g
B = D =] g = 2]
= - - 8 - - - -
oo = = - o = - - b -
verms  MLARME Gk EDDE b1 B0 R b1 UE R MR BY RE b a0 I T A e T T
P ) . . . ) ' e + . a ' P .

Figure 3: Box plots of mean error rates of classification and coefficients of variation for § = 3

The box plots for each n; shows comparative results forp : ¢ =1 :3,1: 1,3 : 1 for nvar = 4
andp:q=1:1,3:1for nvar = 8. For the different §’s considered, variable ratiop: ¢ =1:3
recorded the highest error rate with that of p : ¢ = 3 : 1 having the least for nvar = 4. For
both nvar = 4 and 8, p : ¢ = 3 : 1 had the least error rate though it recorded higher variability
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compared to that of p : ¢ = 1 : 1. The variations were also found to be very high as compared
to their mean error rates, especially for p: ¢ = 3 : 1. As ¢ increased from 1 to 3, the error rates
were found to decrease but with increasing variations. Though the error rates for § = 3 were
very low, the observed variations were very high.

4.4 Discussion

The location model is known to give much better results than the traditional linear discrim-
inant analysis for a mixed variable case (e.g. Krzanowski, 1975; Krzanowski, 1980; Vla-
chonikolis and Marriott, 1982). Problem however arises when the number of qualitative
variables are large, and has necessitated various variable selection procedures (e.g.
Krzanowski, 1983; Krzanowski, 1995; Gutiérrez et al., 2008; Hamid, 2010; Kakai and
Palm, 2009; Kakai, Pelz and Palm, 2010). We assessed the error rates of the location model
through Monte Carlo experiments for the two groups classification model. The simulation de-
sign took into account the total number of mixed continuous-binary variables, their respective
ratios, the distance between the two groups and the total sample size.

The results showed a reduction in error rates when the sample size of group1, n; increased
from 40 through to 120 for all factor combinations. In general it can also be inferred that an
increase in the total sample size resulted in decreased rates of misclassification (see Table 1).
The model also recorded an improvement when the group centroid separator was increased.
The rates of misclassification were minimal (Lei and Koehly, 2003). Based on our simulation
studies, the error rates decreased as we increased the distance between the populations, ¢
from 1 to 3 but with increased variability in reported error rates. (Figures 1 to 3).

The main finding of this study is the recommended number of mixed continuous-binary vari-
ables and their respective ratios. The study could only take into account two sets of mixed
variables — 4 and 8. Under the various factor combinations respectively for both the 4 and 8
mixed variables, a close look at the results shown in Table 1 shows that the 8 variable recorded
the least error rates (see also Figures 1 to 3). However, there is little deviation to this conclu-
siondrawn only forn; =40,p:¢=1:1,and 6 = 1 and 2. It can also be seen from the boxplots
(shown in Figures 1 to 3) that the variations recorded for the two sets of mixed variables was
lower for the 8 variable cases than for the 4 nvar under the respective n;’s and continuous-
binary variable ratios p: ¢ = 1 : 1, 3:1 and for 6 = 2,3. In the results for § = 1 the variations of
p:q=3:1were lower for the 4 than the 8 variable. As far as the continuous-binary variable
ratios were concerned, the results for the 4 variable model showed that theratiop : ¢ =1:3
recorded the highest error rate with p : ¢ = 3 : 1 having the least. Thus, as the group centroids
moved further apart, the performance of the function improved especially for p : ¢ = 3 : 1
and fairly large sample sizes. Though the error rates displayed larger variability, increasing the
sample size improved the stability.
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5 Conclusion

This study has shown that the performance of the location model improved more rapidly when
the distance factor ¢ increased than when the sample size increased asymptotically. The p :
q = 3 : 1 model recorded the least error rates for all sample sizes considered but there was an
increase in the variability of the reported erro rates. The model reported considerably higher
error rates for p : ¢ = 1 : 3 although the reported rates were less volatile than those observed
for the the p : ¢ = 3 : 1 model. The 8 variable model performed marginally better than the 4
variable model for large sample sizes of p : ¢ = 1 : 1 and outperformed it for all sample sizes
of p: ¢ =3 : 1. The 8 variable model with continuous to binary variable ratiop : ¢ = 3 : 1 was
found to be the optimum allocation model is the . We conclude that to use the location model
for classification problems with equal (or more) categorical to continuous variables, it should
be compensated with increased distance function and large samples.
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